

The Δg workflow: from measured displacements to the differential external acceleration

D. Vetrugno

on behalf of the LPF collaboration

University of Trento and TIFPA, INFN

Trento Institute for Fundamental Physics and Applications

We want to measure the relative acceleration between two freely falling testmass

$$\mathbf{S^{1/2}_{\Delta g}} \lesssim \mathbf{3} \times \mathbf{10^{-14}} \frac{\mathrm{m}}{\mathrm{s}^2 \sqrt{\mathrm{Hz}}} \times \sqrt{\left(1 + \frac{\mathbf{f}}{3 \mathrm{mHz}}\right)^4}$$

Δg is the differential external acceleration in LISA Pathfinder

$$\Delta g(t) = \ddot{o}_{12}(t) + \frac{\omega_2^2}{\omega_2} o_{12}(t) + \frac{\Delta \omega^2}{\omega_2} o_1(t) - \frac{C_{sus}}{\omega_2} g_c(t) - c_1 \dot{g}_c(t)$$

Calibration process

- 1. Design and plan the calibration experiments.
- 2. Fit the dynamics of the system to a fiducial model.
- 3. Convert a noise run into external differential force.
- 4. Compare residuals with noise.

Calibration experiments

Name	Duration (hrs)	Туре	Features
3045 default	6	Guidance	[1 -50 mHz] Drag Free (DF) and Suspension Loop (SL)
3045 short	3	Guidance	[1 -50 mHz] DF and SL
3045 long	9	Guidance	[0.55 -50 mHz] DF and SL
Calibration Tone 1	39	Ool force	20 fN - 7 mHz
Calibration Tone 2	3	Ool force	100 fN - 7 mHz
Calibration Tone 3	65	Ool force	100 fN - 10 mHz
IFOX1X12	1	Guidance	400 mHz – 1 nm
Low frequency calibration	16	Voltage modulation on Z	[++++] 0.25 V – 1 mHz 5 mHz 0.25 mHz

See of N. Karnesis poster

3045-like experiments

- Guidance in Drag Free and suspension loop of the order of nanometers
- Frequency range from 1 to 50 mHz
- Applied force of the order of pN

The 3045 fitting models

 $\begin{array}{c} \mbox{gain of the} \\ \mbox{commanded force} \quad \mbox{delay} \\ \mbox{\downarrow} \quad \m$

Fit with Iterative Reweighted Least square fit (IRLS)

Analysis frequency range

Default and short : [0.5 – 60] mHz

Long : [0.3 – 60] mHz

See of N. Karnesis poster

Parameters and residuals

The contributions to the noise

Coupling to the spacecraft motion through force gradient is almost two order of magnitude less that expected

Features of Δg(t)

Corrections to the residuals acceleration models

$$\Delta g(t) = \ddot{o}_{12}(t) + \omega_2^2 o_{12}(t) + \Delta \omega^2 o_1(t) - C_{sus} g_c(t) - c_1 \dot{g}_c(t)$$

crosstalk and other contributions

 $+\sum_{k}c_{k}[n]*s_{k}[n]$

 \boldsymbol{k}

 $\vec{r} = \dot{\vec{\omega}} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$

(centrifugal force)

$$\alpha\bar{\phi} + \beta\bar{\eta} + \gamma\bar{y} + \delta\bar{z} + \delta_1\ddot{o_1}$$

(sensing crosstalk)

11th International LISA Symposium University of Zurich, Switzerland

IFOX1X12

Subtraction of the centrifugal forces...

$$\Delta g(t) = \ddot{o}_{12}(t) + \omega_2^2 o_{12}(t) + \Delta \omega^2 o_1(t) - C_{sus} g_c(t) - c_1 \dot{g}_c(t)$$

... a.k.a. Decentrifugation

$$\ddot{x}(t) = (\dot{\vec{\omega}} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})) \cdot \hat{x}$$

Δg non inertial

$$\Delta g_{\Omega} = \ddot{x_2} - \ddot{x_1} = (\omega_{\phi}^2 + \omega_{\eta}^2)(x_2 + x_1) + (\omega_{\phi} - \omega_{\eta}\omega_{\theta})(y_2 - y_1) + (\omega_{\eta} + \omega_{\phi}\omega_{\theta})(x_2 - z_1)$$

$$\Delta g_{\Omega} = (\omega_{\phi}^2 + \omega_{\eta}^2) 2x_1 \quad \longleftarrow \quad \begin{array}{c} \text{Dead-reckoning} \\ \text{subtractions} \end{array}$$

How do we get it?

Some features disappear after subtracting centrifugal forces

Sometimes noise at low frequency decreases after subtracting centrifugal forces

∆g corrected (or debumped)

$$\Delta g(t) = \ddot{o}_{12}(t) + \omega_2^2 o_{12}(t) + \Delta \omega^2 o_1(t) - C_{sus} g_c(t) - c_1 \dot{g}_c(t)$$

See of G. Wanner poster

The published Δg

Other correction to Δg

 Gas depletion in the tanks that makes the DC Δg to change (see V. Ferroni's poster).

- Speculative corrections:
 - Correction for a possible error in commanded force introduced by digitization.
 - Second order effects in the centrifugal forces.