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1. Motivations and Preliminary Mission Concepts

Possible future TechDemoSat for the planned Chinese space-borne
gravitational wave antenna.
I A differential measurement of Earth’s gravitomagnetic field predicted by

Einstein’s GR to unprecedented accuracy better than 1%.
I Improve the accuracy in the measurement of some post-Newtonian parameters.
I Track the temporal variation of the Earth gravity field.
I Set constraints on low energy effective theory related to string theory and quantum

gravity, such as Chern-Simons gravity and torsion gravity.

Precision measurement of the GravitoMagnetic (Frame-Dragging)
effects as one of the outstanding tests of GR in the 21st century
I Poorly tested, remained the major challenge in experimental relativity.
I Related to fundamental issues such as the origins of inertial and etc..
I Applications to future space science such as the determinations of inertial frames,

synchronizations of clocks in deep space and etc..

In weak field and slow motion limits GM
c2r ∼

v2

c2 ∼ O(ε2),
there exists rich correspondences between
electrodynamics and GR.
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Preliminary Mission Concepts

I Near Polar orbit with altitude about 2000km .
I Freely-falling spacecraft in the Earth pointing orientation.
I Two drag-free TMs located at the along track direction with

distance about 50cm.
I On-board laser interferometers as read out system.
I Two TMs located at transverse direction with distance about

50cm to remove errors caused by jitters or random rotations of
the SpaceCraft (S/C)about the radial axis.

I Attitude control.

I The gravitomagnetic signal sGM in the transverse
direction will reach a few nanometers in about
two days operations

2. Physical Picture

For the two drag-free TMs at the along-track direction along a nearly
circular orbit.

I The freely-falling S/C is given an initial
angular velocity to maintain its Earth
pointing orientation, which can be
viewed as a gyroscope moving along
the orbit.

I Due to the frame-dragging effect, the
orientation of the S/C (a freely-falling
gyroscope) will precess slowly about
the Earth rotation axis with rate

ΩS/C =
GJ sin I
2c2a3

+O(J2).

I The two drag-free TMs can be viewed as the two
markers on the orbit. When the orbit precess slowly
about the Earth rotation axis, the position difference
vector Z i will also precess with rate

ΩN =
2GJ sin I

c2a3
+O(J2),

The existence of a constant offset between these two
precessing rates will give rise to a relative oscillation
between the two TMs along the transverse direction

sGM ≈ d sin(ΩNt − ΩS/Ct) sin(ωt)

≈
3GdJt sin I sin(ωt)

2c2a3
,

The growing
oscillations along the
transverse direction
as a differential
measurements of the
GM effect.

3. Mechanical Principle (I)

An orbiting proof mass m satisfies the PN equations of motion
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The GM force ~FGM = −2m~v
c × ~Bg contributes the only

transverse perturbation along e i
(3) . Their gradient

between the two TMs reads

δ~FGM ∼
d
a

GmJv
c2a3

sin I cos(ωt),

whose frequency matches that of the natural
frequency of the relative motions along the
transverse direction. This gives rise to an resonant
oscillation in the transverse direction

sGM ∼
GdJt sin I sin(ωt)

c2a3
.

4. Mechanical Principle (II)

I The PN nearly circular orbit can be solved as

x1 = a cos Ψ cos
(
2GJτ/c2a3)− a cos I sin Ψ sin

(
2GJτ/c2a3) ,

x2 = a cos I sin Ψ cos
(
2GJτ/c2a3)+ a cos Ψ sin

(
2GJτ/c2a3) ,

x3 = a sin I sin Ψ.

I The PN extension of the Clohessy-Wiltshire Equations that determines the local
motions in the freely-falling Earth pointing frame can be written as Z̈ (1)(τ )
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︸ ︷︷ ︸

1PN corrections to tidal forces

= 0.

I For the two TMs at the along-track direction, we set the initial values
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The PN corrections δ(m) to the periodic solutions of the classical
Clohessy-Wiltshire Equations read

δ(1)(τ ) =
12GdJ cos I sin2(ωτ2 )

c2a3ω
+ dO(ε2λ),

δ(2)(τ ) = −
3GdJ cos I(sin(ωτ )− τω)

c2a3ω
+ dO(ε2λ),

δ(3)(τ ) =
3GdJ sin I sin(ωτ )

2c2a3
τ + dO(ε2λ).

5. Readouts and Error Analysis
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I In the final readout, the disturbances ZCM of the mass
center of the S/C in the e i

(1) − e i
(3) plan and the errors

caused by the jitters or random rotations δθ of the S/C
about the radial axis may be removed.

I Noises ni caused by the initial deviations of the TM’s position
from the nominal values can be reduced to nanometer-level.

I Total acceleration noise ∼ 10−15m/s2Hz
1
2 in the low frequency

band. While, along the transverse direction, position
disturbances of the signal frequency caused by the residual
acceleration noises will be amplified with time as ∼

√
t .
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I Noises and errors ngeo from geopotential multipoles, especially
the J2 component, may be adjusted and fitted out given the
precision measured results from SLR and in EGM08.
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