
Late time cosmology with eLISA

Nicola Tamanini

Institut de Physique Théorique CEA-Saclay – CNRS – Université Paris-Saclay

(人間) (人) (人) (人)

Standard sirens:

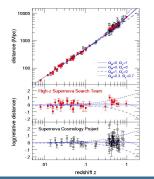
Concept and issues

Forecast cosmological constraints for eLISA:

- Approach: simulation of MBHB mergers, detection by eLISA, observation of EM counterpart
- Standard cosmologies: ACDM, curvature, dynamical DE
- Alternative cosmologies: early and interacting DE

(4回) (日) (日)

The luminosity distance can be inferred directly from the measured waveform: <u>GW sources are standard distance indicator</u>!


$$h_{\times} = \frac{4}{d_L} \left(\frac{G\mathcal{M}_c}{c^2}\right)^{\frac{5}{3}} \left(\frac{\pi f}{c}\right)^{\frac{2}{3}} \cos \iota \sin[\Phi(t)]$$

If the redshift of the source is known, then one can fit the <u>distance-redshift relation</u>:

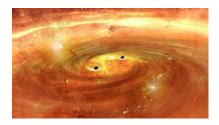
$$d_{L}(z) = \frac{c}{H_{0}} \frac{1+z}{\sqrt{\Omega_{k}}} \sinh \left[\sqrt{\Omega_{k}} \int_{0}^{z} \frac{H_{0}}{H(z')} dz' \right]$$

► Exactly as SNIa ⇒ standard sirens

Need an EM counterpart!

With EM waves:

- Measuring redshift is easy: compare EM spectra
- ► Measuring distance is hard: need objects of known luminosity (SNIa → standard candles)


With GW:

- Measuring distance is easy: directly from the waveform (standard sirens)
- Measuring redshift is hard:
 - Degeneracy with masses in the waveform (GR is scale-free)
 - Need to identify an EM counterpart:
 - Optical, Radio, X-rays, γ-rays,
 - Need good sky location accuracy from GW detection to pinpoint the source or its hosting galaxy

・ロン ・回 と ・ ヨ と ・ ヨ と

How many standard sirens will be detected by eLISA?

- What type of sources can be used?
- For how many it will be possible to observe a counterpart?

▲ □ ► ▲ □ ►

Possible standard sirens sources for eLISA:

- MBHBs $(10^4 10^7 M_{\odot})$
- LIGO-like BHBs $(10 100 M_{\odot})$
- EMRIs

通 と く ほ と く ほ と …

Possible standard sirens sources for eLISA:

- MBHBs $(10^4 10^7 M_{\odot})$
- LIGO-like BHBs $(10 100 \, M_{\odot})$
- EMRIs

Advantages of MBHB mergers:

- High SNR
- High redshifts (up to \sim 10-15)
- Merger within eLISA band –

To obtain cosmological forecasts, we have adopted the following **realistic strategy**:

[NT, Caprini, Barausse, Sesana, Klein, Petiteau, arXiv:1601.07112]

- Start from simulating MBHBs merger events using 3 different astrophysical models [arXiv:1511.05581]
 - Light seeds formation (popIII)
 - Heavy seeds formation (with delay)
 - Heavy seeds formation (without delay)
- Compute for how many of these a GW signal will be detected by eLISA (SNR>8)
- \blacktriangleright Among these select the ones with a good sky location accuracy ($\Delta\Omega<10\,{\rm deg}^2)$
- Focus on 5 years eLISA mission (the longer the better for cosmology)

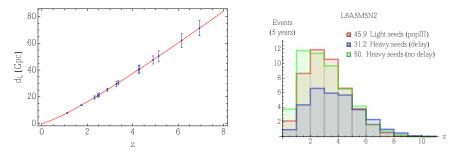
向下 イヨト イヨト

eLISA cosmological forecasts: data simulation approach

- To model the counterpart we generally consider two mechanisms of EM emission at merger: (based on [arXiv:1005.1067])
 - A quasar-like luminosity flare (optical)
 - Magnetic field induced flare and jet (radio)
- Magnitude of EM emission computed using data from simulations of MBHBs and galactic evolution

Finally **to detect the EM counterpart** of an eLISA event sufficiently localized in the sky we use the following two methods:

- **LSST**: direct detection of optical counterpart
- SKA + E-ELT: first use SKA to detect a radio emission from the BHs and pinpoint the hosting galaxy in the sky, then aim E-ELT in that direction to measure the redshift from a possible optical counterpart either
 - Spectroscopically or Photometrically



▲ □ ► ▲ □ ►

eLISA cosmological forecasts: MBHB standard sirens rate

Example of simulated catalogue of MBHB standard sirens:

<u>Note 1</u>: eLISA will be able to map the expansion at very high redshifts (data up to $z \sim 8$), while SNIa can only reach $z \sim 1.5$ Note 2: Few data at low redshift \Rightarrow bad for DE (but can use SNIa)

(1日) (二)

eLISA forecasts: standard cosmological models

We first analysed the following 3 cosmological models:

- ► **\CDM**:
 - 2 parameters (Ω_M, h)
 - fix $\Omega_M + \Omega_\Lambda = 1$, $w_0 = -1$ & $w_a = 0$
- ► **ACDM** + curvature:
 - 3 parameters $(\Omega_M, \Omega_\Lambda, h)$
 - fix $w_0 = -1 \& w_a = 0$
- Dynamical dark energy: $w = w_0 + \frac{z}{z+1}w_a$
 - 2 parameters (w₀, w_a)
 - $\Omega_M = 0.3, \ \Omega_{\Lambda} = 0.7 \ \& \ h = 0.67$

Performing a Fisher matrix analysis from the simulated data:

$$F_{ij} = \sum_{n} \frac{1}{\sigma_n^2} \left. \frac{\partial d_L(z_n)}{\partial \theta_i} \right|_{\rm fid} \left. \frac{\partial d_L(z_n)}{\partial \theta_j} \right|_{\rm fid}$$

■ ► ▲ Ξ ► ▲ Ξ ►

RESULTS: [NT et al, arXiv:1601.07112]

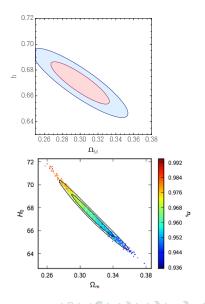
 1σ constraints with L6A5M5N2 (best possible configuration):

$$\Lambda \mathbf{CDM}: \begin{cases} \Delta \Omega_M \simeq 0.025 \quad (8\%) \\ \Delta h \simeq 0.013 \quad (2\%) \end{cases}$$
$$\Lambda \mathbf{CDM} + \mathbf{curvature}: \begin{cases} \Delta \Omega_M \simeq 0.054 \quad (18\%) \\ \Delta \Omega_\Lambda \simeq 0.15 \quad (21\%) \\ \Delta h \simeq 0.033 \quad (5\%) \end{cases}$$
$$\mathbf{Dynamical DE:} \begin{cases} \Delta w_0 \simeq 0.16 \\ \Delta w_a \simeq 0.83 \end{cases}$$

Similar results with A2 and A1, but much worst with L4

回 と く ヨ と く ヨ と

eLISA forecasts: standard cosmological models

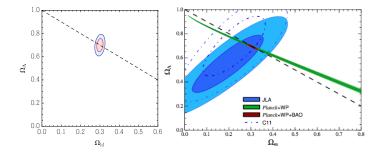

Comparing with CMB (ACDM):

From L6A5M5N2 with ACDM:

$$\begin{cases} \Omega_{M} = 0.3 \pm 0.025 \\ \Omega_{\Lambda} = 0.7 \pm 0.025 \\ H_{0} = 67 \pm 1.3 \, \mathrm{km/s/Mpc} \end{cases}$$

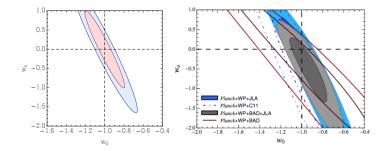
From today CMB [Planck2015]:

$$\begin{cases} \Omega_{M} = 0.3121 \pm 0.0087 \\ \Omega_{\Lambda} = 0.6879 \pm 0.0087 \\ H_{0} = 67.51 \pm 0.64 \, \mathrm{km/s/Mpc} \end{cases}$$


Comparing with Supernovae (\CDM):

Expected from L6A5M5N2:

From today SNe: [Betoule et al (2014)]


 $\Omega_{\textit{M}}=0.3\pm0.009$

$$\Omega_{\textit{M}}=0.289\pm0.018$$

eLISA forecasts: standard cosmological models

Comparing with SNIa/CMB/BAO (dark energy):

 $\frac{\text{Expected from L6A5M5N2}}{(\text{fixing } \Omega_M, \Omega_\Lambda, h)}$

$$w_0 = -1.00 \pm 0.16$$

 $w_a = 0.00 \pm 0.83$

 $\underline{\mathsf{From CMB} + \mathsf{SNe} + \mathsf{BAO}}:$

[Betoule et al (2014)]

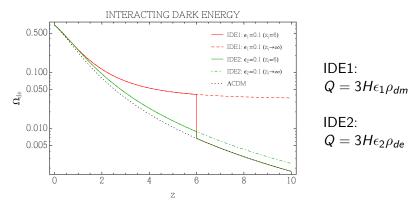
$$w_0 = -1.073 \pm 0.146$$

 $w_a = -0.066 \pm 0.563$

イロト イヨト イヨト イヨト

Investigation of alternative cosmological models:

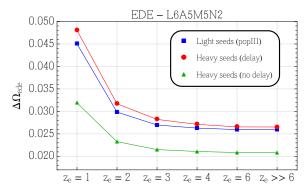
[C. Caprini & NT, arXiv:1607.08755]


- Same approach to construct standard sirens catalogues and analyse data
- ► Focus on interesting and simple phenomenological models:
 - Early dark energy (EDE): non-negligible amount of DE at early times [arXiv:1301.5279]
 - Interacting dark energy (IDE): mild indications for a non-vanishing late-time dark interaction [arXiv:1406.7297]
- ► Deviations from ACDM allowed only up to a determined redshift (*z_e*, *z_i*)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

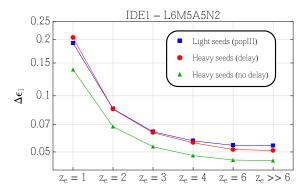
Early dark energy: non negligible DE energy density at early times: $\Omega_{de}(z) \rightarrow \Omega_{de}^{e} \neq 0$ as $z \rightarrow \infty$

$$\Omega_{de}(z) = \frac{\Omega_{de}^{0} - \Omega_{de}^{e} \left[1 - (z+1)^{3w_{0}}\right]}{\Omega_{de}^{0} + \Omega_{m}^{0}(z+1)^{-3w_{0}}} + \Omega_{de}^{e} \left[1 - (z+1)^{3w_{0}}\right]$$


Interacting dark energy:

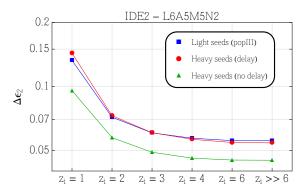
non-gravitational interaction between DM and DE

$$\dot{
ho}_{dm} + 3H
ho_{dm} = Q$$
 $\dot{
ho}_{de} + 3H(1+w_0)
ho_{de} = -Q$


< 17 ►

Results for EDE: [C. Caprini & NT, arXiv:1607.08755]

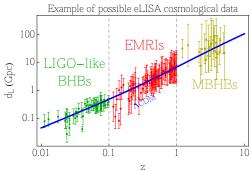
- If $z_e \gtrsim 10$ then strong constraints from CMB: $\Delta \Omega_{\rm ede} = 0.0036$ [Planck, 2015]
- ► However if $z_e \lesssim 10$ then CMB results do not apply and only eLISA can constrain deviations from Λ CDM


Results for IDE1: [C. Caprini & NT, arXiv:1607.08755]

- If $z_i \gg 10$ present constraints are better by two order of magnitude: $\sim 10^{-4}$ (Planck+SNla+BAO+H₀) [1506.06349, 1605.04138]
- No analyses with current data if $z_i \lesssim 10$

向下 くほう

Results for IDE2: [C. Caprini & NT, arXiv:1607.08755]


• If $z_i \gg 10$ presents constraints give comparable results: $\sim 10^{-2}$ (Planck+SNIa+BAO+H₀) [1506.06349, 1607.05567]

▶ If $z_i \leq 10$ then eLISA is expected to perform much better

eLISA cosmological forecasts: future prospects

Future work:

- Exploit other eLISA GW sources for cosmology (lower z) (this will improve the results from MBHBs only)
 - LIGO-like BH binaries $(z < 0.1) \rightarrow$
 - EMRIs $(0.1 < z < 1) \rightarrow$ no counterparts expected!

Cosmology at all redshift ranges with eLISA!

Conclusions

MBHBs are excellent standard sirens for eLISA

 Systematic-free measures of distance (no calibration needed as for SNe)

Need to identify EM counterparts to measure redshift

- Will depend on final eLISA design, capacities of future telescopes and magnitude of EM emissions
- Forecast accuracy (with MBHBs only) comparable with present probes, but not with future ones (e.g. Euclid), however:
 - New cosmological information from GWs (not EM only): help in solving possible tensions (e.g. H₀)
 - Direct probe of expansion at high redshifts (up to z ~ 8): good for testing alternative cosmological models
 - Will improve including analysis for other eLISA sources (EMRIs, LIGO-like BHs, ...) → cosmology at all redshifts

ロンス通どス語とス語と