A synthetic model of the gravitational wave background from evolving binary compact objects

Irina Dvorkin, Jean-Philippe Uzan, Elisabeth Vangioni, Joe Silk (Institut d'Astrophysique de Paris)
[arXiv:1607.06818]

11th International LISA Symposium, 8 September 2016

## Sources of Gravitational Waves

## THE GRAVITATIONAL WAVE SPECTRUM



## Model framework

Gas $\xrightarrow{S F R} \underset{(M, Z)}{\text { Stars }}$

## Model framework



## Model framework



## Model framework



## BH binaries number density (simple case)

If all BH are in binaries, and all merger products remain single, the number density $n_{X}$ of binaries in a certain mass $M$ and orbital parameters bin is set by: [where $\mathbf{w}=(a, e)]$

- The formation rate of BH (determined from stellar physics) $R_{X}(M, t)$
- The initial distribution of orbital parameters $\mathcal{P}_{X}(\mathbf{w})$
- The evolution in time of the orbital parameters of the binary $\mathrm{d} \mathbf{w} / \mathrm{d} t$


## Evolution of the orbital parameters

General case $(\mathbf{w}=(a, e))$ :

$$
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} t}=\mathbf{f}(\mathbf{w}, M)
$$

A merger occurs when $\mathbf{w}=\mathbf{w}_{\text {merger }}$

## Evolution of the orbital parameters

General case $(\mathbf{w}=(a, e))$ :

$$
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} t}=\mathbf{f}(\mathbf{w}, M)
$$

A merger occurs when $\mathbf{w}=\mathbf{w}_{\text {merger }}$
Example: evolution due to emission of GW [Peters \& Mathews (1963)]

$$
\begin{aligned}
\frac{\mathrm{d} a}{\mathrm{~d} t} & =-\frac{64}{5} \frac{G^{3} \mu m^{2}}{c^{5} a^{3}} \frac{\left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right)}{\left(1-e^{2}\right)^{7 / 2}} \\
\frac{\mathrm{~d} e}{\mathrm{~d} t} & =-\frac{304}{15} \frac{G^{3} \mu m^{2}}{c^{5} a^{4}} \frac{e\left(1+\frac{121}{304} e^{2}\right)}{\left(1-e^{2}\right)^{5 / 2}}
\end{aligned}
$$

## Continuity equation

Hydrodynamics (matter density $\rho$, coordinate $x$, velocity $u=\mathrm{d} x / \mathrm{d} t$ ):

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} t}+\frac{\mathrm{d}}{\mathrm{~d} \mathbf{x}} \cdot[\rho \mathbf{u}]=0
$$

## Continuity equation

Hydrodynamics (matter density $\rho$, coordinate $x$, velocity $u=\mathrm{d} x / \mathrm{d} t$ ):

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} t}+\frac{\mathrm{d}}{\mathrm{~d} \mathbf{x}} \cdot[\rho \mathbf{u}]=0
$$

Binaries (number density $n_{X}$, coordinate $\mathbf{w}$, velocity $\mathbf{f}=\mathrm{d} \mathbf{w} / \mathrm{d} t$ ):

$$
\frac{\mathrm{d} n_{X}}{\mathrm{~d} t}+\frac{\mathrm{d}}{\mathrm{~d} \mathbf{w}} \cdot\left[n_{X} \mathbf{f}\right]=0
$$

## Continuity equation

Hydrodynamics (matter density $\rho$, coordinate $x$, velocity $u=\mathrm{d} x / \mathrm{d} t$ ):

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} t}+\frac{\mathrm{d}}{\mathrm{~d} \mathbf{x}} \cdot[\rho \mathbf{u}]=0
$$

Binaries (number density $n_{X}$, coordinate $\mathbf{w}$, velocity $\mathbf{f}=\mathrm{d} \mathbf{w} / \mathrm{d} t$ ):

$$
\frac{\mathrm{d} n_{X}}{\mathrm{~d} t}+\frac{\mathrm{d}}{\mathrm{~d} \mathbf{w}} \cdot\left[n_{X} \mathbf{f}\right]=0
$$

Assuming $\partial / \partial t=0$ (stationary distribution of binaries in the galaxy) $\longrightarrow$ stochastic GW emission from coalescing binary NS

Buitrago, Moreno-Garrido \& Mediavilla (1994); Moreno-Garrido, Mediavilla \& Buitrago (1995); Ignatiev et al. (2001)

## Continuity equation

Hydrodynamics (matter density $\rho$, coordinate $x$, velocity $u=\mathrm{d} x / \mathrm{d} t$ ):

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} t}+\frac{\mathrm{d}}{\mathrm{~d} \mathbf{x}} \cdot[\rho \mathbf{u}]=0
$$

Binaries (number density $n_{X}$, coordinate $\mathbf{w}$, velocity $\mathbf{f}=\mathrm{d} \mathbf{w} / \mathrm{d} t$ ):

$$
\frac{\mathrm{d} n_{X}}{\mathrm{~d} t}+\frac{\mathrm{d}}{\mathrm{~d} \mathbf{w}} \cdot\left[n_{X} \mathbf{f}\right]=R_{X}
$$

No stationarity
Source function $R_{X}$ is given by astrophysics

## Continuity equation (single population)

$$
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} t}=\mathbf{f}(\mathbf{w}, M)
$$

## Continuity equation (single population)

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} t} & =\mathbf{f}(\mathbf{w}, M) \\
\frac{\mathrm{d} n_{X}^{(1)}(M, t)}{\mathrm{d} t} & =S\left(M^{\prime}, M^{\prime}, t\right)
\end{aligned}
$$

## Continuity equation (single population)

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} t} & =\mathbf{f}(\mathbf{w}, M) \\
\frac{\mathrm{d} n_{X}^{(1)}(M, t)}{\mathrm{d} t} & =S\left(M^{\prime}, M^{\prime}, t\right) \\
\frac{\mathrm{d} n_{X}^{(2)}(M, M, \mathbf{w}, t)}{\mathrm{d} t} & =\frac{1}{2} R_{X}(M, t) \mathcal{P}_{X}(\mathbf{w}) \\
& -\frac{\partial}{\partial \mathbf{w}} \cdot\left[\mathbf{f}(\mathbf{w}, M) n_{X}^{(2)}(M, M, \mathbf{w}, t)\right]
\end{aligned}
$$

## Continuity equation (single population)

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} t} & =\mathbf{f}(\mathbf{w}, M) \\
\frac{\mathrm{d} n_{X}^{(1)}(M, t)}{\mathrm{d} t} & =S\left(M^{\prime}, M^{\prime}, t\right) \\
\frac{\mathrm{d} n_{X}^{(2)}(M, M, \mathbf{w}, t)}{\mathrm{d} t} & =\frac{1}{2} R_{X}(M, t) \mathcal{P}_{X}(\mathbf{w}) \\
& -\frac{\partial}{\partial \mathbf{w}} \cdot\left[\mathbf{f}(\mathbf{w}, M) n_{X}^{(2)}(M, M, \mathbf{w}, t)\right]
\end{aligned}
$$

$S$ is source term due to mergers
All the merger products remain single, all objects are in binaries

## Continuity equation (single population)

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} t} & =\mathbf{f}(\mathbf{w}, M) \\
\frac{\mathrm{d} n_{X}^{(1)}(M, t)}{\mathrm{d} t} & =\left(1-\beta_{X}\right) S\left(M^{\prime}, M^{\prime}, t\right) \\
\frac{\mathrm{d} n_{X}^{(2)}(M, M, \mathbf{w}, t)}{\mathrm{d} t} & =\frac{1}{2} R_{X}(M, t) \mathcal{P}_{X}(\mathbf{w})+\frac{1}{2} \beta_{X} S\left(M^{\prime}, M^{\prime}, t\right) \mathcal{P}_{X}(\mathbf{w}) \\
& -\frac{\partial}{\partial \mathbf{w}} \cdot\left[\mathbf{f}(\mathbf{w}, M) n_{X}^{(2)}(M, M, \mathbf{w}, t)\right]
\end{aligned}
$$

$S$ is source term due to mergers
$\left(1-\beta_{X}\right)$ of merger products remain single, all objects are in binaries

## Continuity equation (single population)

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} t} & =\mathbf{f ( \mathbf { w } , M )} \\
\frac{\mathrm{d} n_{X}^{(1)}(M, t)}{\mathrm{d} t} & =\left(1-\alpha_{X}\right) R_{X}(M, t)+\left(1-\beta_{X}\right) S\left(M^{\prime}, M^{\prime}, t\right) \\
\frac{\mathrm{d} n_{X}^{(2)}(M, M, \mathbf{w}, t)}{\mathrm{d} t} & =\frac{1}{2} \alpha_{X} R_{X}(M, t) \mathcal{P}_{X}(\mathbf{w})+\frac{1}{2} \beta_{X} S\left(M^{\prime}, M^{\prime}, t\right) \mathcal{P}_{X}(\mathbf{w}) \\
& -\frac{\partial}{\partial \mathbf{w}} \cdot\left[\mathbf{f}(\mathbf{w}, M) n_{X}^{(2)}(M, M, \mathbf{w}, t)\right]
\end{aligned}
$$

$S$ is source term due to mergers
$\left(1-\beta_{X}\right)$ of merger products remain single, $\alpha_{X}$ objects are in binaries

## Continuity equation (single population)

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} t} & =\mathbf{f}(\mathbf{w}, M) \\
\frac{\mathrm{d} n_{X}^{(1)}(M, t)}{\mathrm{d} t} & =R_{X}^{(1)}(M, t)+\left(1-\beta_{X}\right) S\left(M^{\prime}, M^{\prime}, t\right) \\
\frac{\mathrm{d} n_{X}^{(2)}(M, M, \mathbf{w}, t)}{\mathrm{d} t} & =R_{X}^{(2)}(M, M, \mathbf{w}, t)+\frac{1}{2} \beta_{X} S\left(M^{\prime}, M^{\prime}, t\right) \mathcal{P}_{X}(\mathbf{w}) \\
& -\frac{\partial}{\partial \mathbf{w}} \cdot\left[\mathbf{f}(\mathbf{w}, M) n_{X}^{(2)}(M, M, \mathbf{w}, t)\right] \\
S\left(M^{\prime}, M^{\prime}, t\right) & =\int_{C_{m}} \mathbf{f} n_{X}^{(2)}\left(M^{\prime}, M^{\prime}, \mathbf{w}, t\right) \cdot \mathrm{d} \boldsymbol{\ell} \\
M & =2 M^{\prime}-\Delta M\left(M^{\prime}\right)
\end{aligned}
$$

## Initial distribution of orbital parameters

Sana et al. (2012); de Mink \& Belczynski (2015)
Joint distribution: $\mathcal{P}_{X}(\mathbf{w})=P(e) P(a)$

- $P(e) \propto e^{-0.42}$
- $P(\log T) \propto(\log T)^{-0.5}$ in $T \in\left(T_{\min }, T_{\max }\right)$


## Initial distribution of orbital parameters

Sana et al. (2012); de Mink \& Belczynski (2015)
Joint distribution: $\mathcal{P}_{X}(\mathbf{w})=P(e) P(a)$

- $P(e) \propto e^{-0.42}$
- $P(\log T) \propto(\log T)^{-0.5}$ in $T \in\left(T_{\min }, T_{\max }\right)$



## Time to coalescence

$a_{\text {min }}$ chosen so as to fit the observed merger rate $\left(\tau_{\text {merger }} \propto a^{4}\right)$


## Initial distribution of orbital parameters

Sana et al. (2012)

$$
a_{\min }=0.2 \mathrm{AU} \rightarrow T \simeq 10 \text { days for } M \simeq 10 M_{\odot}
$$



## Complete model

Dvorkin et al. (2016) [1604.04288], [1607.06818]

- Galaxy evolution (gas inflow/outflow, SFR, chemical evolution) [Daigne et al. (2004, 2006), Vangioni et al. (2015), Dvorkin et al.(2015)]
- BH formation [Fryer et al. (2012)]
- Distribution of masses and orbital parameters of BH binaries
- Evolution of the binaries due to emission of GW


## GW background from BH binaries

Dvorkin et al. [1607.06818]


## Summary

## An exciting time for astrophysics:

- Gravitational wave astronomy will provide constraints on:
- Stellar evolution
- Binary interactions


## Summary

An exciting time for astrophysics:

- Gravitational wave astronomy will provide constraints on:
- Stellar evolution
- Binary interactions
- More detections to come soon: need tools to analyze them and extract astrophysical information


## Summary

An exciting time for astrophysics:

- Gravitational wave astronomy will provide constraints on:
- Stellar evolution
- Binary interactions
- More detections to come soon: need tools to analyze them and extract astrophysical information


## What we plan to do next:

- Include BH-NS mergers
- Explore a full merger-tree based galaxy evolution model
- Test different BH formation scenarios
- Use formalism for SMBH


## Additional slides

## Astrophysics with gravitational waves

- GW150914: The most massive stellar black holes ever observed!
- Masses: $36_{-4}^{+5} M_{\odot}$ and $29_{-4}^{+4} M_{\odot}$


## Astrophysics with gravitational waves

- GW150914: The most massive stellar black holes ever observed!
- Masses: $36_{-4}^{+5} M_{\odot}$ and $29_{-4}^{+4} M_{\odot}$
- Starting to measure the BH mass distribution (LIGO Scientific, VIRGo Collaborations [1606.04856])



## Astrophysics with gravitational waves

- GW150914: The most massive stellar black holes ever observed!
- Masses: $36_{-4}^{+5} M_{\odot}$ and $29_{-4}^{+4} M_{\odot}$
- Starting to measure the BH mass distribution (LIGO Scientific, VIRGo Collaborations [1606.04856])


What can we learn about stellar evolution and black hole formation?

## Stellar mass black holes - masses

- All previous estimates of BH masses are from X-ray binaries
- GW150914 is the first direct evidence of the existence of 'heavy' stellar mass $\mathrm{BHs}\left(\mathrm{M} \gtrsim 20 \mathrm{M}_{\odot}\right)$


Farr et al. (2007)

## How to make a black hole

- BHs form at the end of the nuclear burning phase of massive stars



## How to make a black hole

- BHs form at the end of the nuclear burning phase of massive stars

- How to relate the initial stellar mass to the BH mass?


## From massive stars to black holes

Mass prior to core collaps is determined by stellar winds


Belczynski et al. (2016)

## From massive stars to black holes

Mass prior to core collapse is determined by stellar winds


Vink (2008)

## Metallicity



## Stochastic gravitational wave background



## Cosmic metallicity evolution

Damped Ly- $\alpha$ systems data from Rafelski et al. (2012)


Dvorkin et al.
(2015)

## Galaxy evolution model

Structures $\mathrm{m}_{\text {struct }}=\mathrm{m}_{\mathrm{ISM}}+\mathrm{m}$.


Intergalactic medium
Daigne et al. (2006)

## Model summary

Baryon flow:

- $\dot{M}_{\text {struct }}=a_{b}(t)+e(t)-\psi(t)-o(t)$
- $\dot{M}_{*}=\psi(t)-e(t)$


## Model summary

Baryon flow:

- $\dot{M}_{\text {struct }}=a_{b}(t)+e(t)-\psi(t)-o(t)$
- $\dot{M}_{*}=\psi(t)-e(t)$

Chemical evolution ( $X_{i}$ is the mass fraction of element $i$ ):

- $\dot{X}_{i}^{I S M}=\frac{1}{M_{I S M(t)}}\left\{e_{i}(t)-e(t) X_{i}^{I S M}+a_{b}(t)\left[X_{i}^{I G M}-X_{i}^{I S M}\right]\right\}$
- $\dot{X}_{i}^{I G M}=\frac{1}{M_{I G M(t)}} o(t)\left\{X_{i}^{I S M}(t)-X_{i}^{I G M}(t)\right\}$


## Self-consistent model of BBH birth rate: overview

## Input

- Galaxy growth (inflow and outflow) prescriptions
- Cosmic star formation rate
- Stellar initial mass function
- Stellar yields
- Black hole mass as a function of initial stellar mass and metallicity

|  | Model name | Ref. | Parameters | Parameter values |
| :---: | :---: | :---: | :---: | :---: |
| BH masses | $W W p$ <br> Fryer <br> $W W p+K$ <br> Fryer $+K$ | Woosley \& Weaver (1995) | $A, \beta, \gamma$ | 0.3, 0.8, 0.2 |
|  |  | Fryer et al. (2012) | - | - |
|  |  | Kinugawa et al. (2014) | $Z_{\text {limit }} / Z_{\odot}$ | 0.001 or 0.01 |
| SFR | Fiducial | Vangioni et al. (2015) | $\nu, z_{m}, a, b$ | $0.178,2.00,2.37,1.8$ |
|  | PopIII |  |  | $0.002,11.87,13.8,13.36$ |
|  | GRB-based |  |  | $0.146,1.72,2.8,2.46$ |
| IMF | Fiducial | Salpeter (1955) | $x$ | 2.35 |
|  | Steep IMF | Chabrier, Hennebelle \& Charlot (2014) |  | 2.7 |

Dvorkin et al. [1604.04288]

## BH masses



Fryer et al. (2012)

## BH masses



Kinugawa et al. (2014)

## Star formation rate



## Optical depth to reionization



## Optical depth to reionization



## Self-consistent model of BBH birth rate: overview

Dvorkin et al. (2015) [1506.06761]

## Input

- Galaxy growth (inflow and outflow) prescriptions
- Cosmic star formation rate
- Stellar initial mass function
- Stellar yields
- Black hole mass as a function of initial stellar mass and metallicity


## Self-consistent model of BBH birth rate: overview

Dvorkin et al. (2015) [1506.06761]

## Input

- Galaxy growth (inflow and outflow) prescriptions
- Cosmic star formation rate
- Stellar initial mass function
- Stellar yields
- Black hole mass as a function of initial stellar mass and metallicity


## Constraints

- Cosmic chemical evolution
- Optical depth to reionization


## Self-consistent model of BBH birth rate: overview

Dvorkin et al. (2015) [1506.06761]

## Input

- Galaxy growth (inflow and outflow) prescriptions
- Cosmic star formation rate
- Stellar initial mass function
- Stellar yields
- Black hole mass as a function of initial stellar mass and metallicity


## Constraints

- Cosmic chemical evolution
- Optical depth to reionization


## Output

- Birth rate of black holes per unit mass


## Merger rates vs. mass

Normalized to the observed merger rate: Dvorkin et al. (2016) [1604.04288]


## Total merger rates

Normalized to the observed merger rate: $R=10^{-7} \mathrm{Mpc}^{-3} \mathrm{yr}^{-1}$


## Merger rates vs. redshift

Normalized to the observed merger rate: $R=10^{-7} \mathrm{Mpc}^{-3} \mathrm{yr}^{-1}$


## Stochastic gravitational wave background

- The background due to unresolved mergers of binary BHs
- Emission of gravitational waves during SN collapse


## Stochastic gravitational wave background

- The background due to unresolved mergers of binary BHs
- Emission of gravitational waves during SN collapse
- Dimensionless density parameter (energy density in units of $\rho_{c}$ per unit logarithmic frequency)

$$
\Omega_{\mathrm{gw}}\left(f_{o}\right)=\frac{8 \pi G}{3 c^{2} H_{0}^{3}} f_{o} \int d m_{b h} \int d z \frac{R_{\text {source }}\left(z, m_{b h}\right)}{(1+z) E_{V}(z)} \frac{d E_{\mathrm{gw}}\left(m_{b h}\right)}{d f}
$$

$R_{\text {source }}\left(z, m_{b h}\right)$ is the merger rate, $d E_{g w} / d f$ is the emitted spectrum

## Stochastic gravitational wave background



## Stochastic gravitational wave background



## Initial distribution of orbital parameters

Sana et al. (2012); de Mink \& Belczynski (2015) $P(\log T) \propto(\log T)^{-0.5}$ in $a \in\left(a_{\min }, a_{\max }\right)$


