The Gravitational-Wave Universe seen by Pulsar Timing Arrays

Chiara M. F. Mingarelli Marie Curie Fellow in Theoretical Astrophysics Caltech/MPIfR

> LISA Symposium September 8th 2016

Outline

- The gravitational-wave spectrum
- Pulsar Timing Arrays
- Continuous nHz gravitational waves
- The gravitational-wave background
- New results in astrophysics and cosmology
- Future directions: anisotropy

The spectrum of gravitational wave astronomy

Pulsar Timing Array

Animation from John Rowe Animation/Australia Telescope National Facility, CSIRO

Millisecond Pulsars

Image courtesy NASA/DOE/Fermi)

Gravitational Waves, Pulsar Timing, and the Deep Space Network

courtesy Joe Lazio

years away. Signal can evolve!

Continuous GW Sources

European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries

S. Babak,^{1*} A. Petiteau,^{2*} A. Sesana,^{1,3*} P. Brem,¹ P. A. Rosado,^{4,5} S. R. Taylor,^{6,7} A. Lassus,^{8,9} J. W. T. Hessels,^{10,11} C. G. Bassa,^{10,12} M. Burgay,¹³ R. N. Caballero,⁸ D. J. Champion,⁸ I. Cognard,^{9,14} G. Desvignes,⁸ J. R. Gair,⁷ L. Guillemot,^{9,14} G. H. Janssen,^{10,12} R. Karuppusamy,⁸ M. Kramer,^{8,12} P. Lazarus,⁸ K. J. Lee,¹⁵ L. Lentati,¹⁶ K. Liu,⁸ C. M. F. Mingarelli,^{3,8,17} S. Osłowski,^{8,18} D. Perrodin,¹³ A. Possenti,¹³ M. B. Purver,¹² S. Sanidas,^{11,12} R. Smits,¹⁰ B. Stappers,¹² G. Theureau,^{9,14,19} C. Tiburzi,^{13,20} R. van Haasteren,¹⁷ A. Vecchio³ and J. P. W. Verbiest^{8,18}

Continuous GW Results

- Assume non-spinning SMBHs in circular orbit
- Model contains a single GW signal
- Separate searches: (i) using earth-term only (ii) using full non-evolving signal (f_p = f_e) (iii) using full evolving signal
- Methods: frequentist and Bayesian methods for setting upper limit on the strain of monochromatic GW source

Continuous GW Results

Continuous GW Results

Horizon Distance

For f < 10 nHz can exclude sub-centiparsec binaries: with $M_c > 10^9$ M out to 25 Mpc; with $M_c > 10^{10}$ M: out to 1 Gpc (z ≈ 0.2).

the nanoHertz gravitational-wave background

Max-Planck-Institut für Radioastronomie

Stochastic Background from SMBHBs

Assuming *circular* SMBH *binaries* driven by GW emission only, can define a characteristic strain:

$$h_c^2 \sim f^{-4/3} \int \int dz d\mathcal{M} \frac{d^2 n}{dz d\mathcal{M}} \frac{1}{(1+z)^{1/3}} \mathcal{M}^{5/3}$$

number of mergers remnants per comoving volume

$$h_c = A \left(\frac{f}{\mathrm{yr}^{-1}}\right)^{-2/3} \qquad \Omega_{\mathrm{gw}}(f) = \frac{2\pi^2}{3H_0^2} f^2 h_c^2$$

Phinney (2001); Sesana (2012)

We know a lot about A, can learn more

Surge in the field in last 10 years, here are the latest results!

New Results: Astrophysics

THE ASTROPHYSICAL JOURNAL, 821:13 (23pp), 2016 April 10 © 2016. The American Astronomical Society. All rights reserved. doi:10.3847/0004-637X/821/1/13

THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

Z. ARZOUMANIAN¹, A. BRAZIER², S. BURKE-SPOLAOR^{3,28}, S. J. CHAMBERLIN⁴, S. CHATTERJEE², B. CHRISTY⁵, J. M. CORDES², N. J. CORNISH⁶, K. CROWTER⁷, P. B. DEMOREST³, X. DENG⁴, T. DOLCH^{2,8}, J. A. ELLIS^{9,29}, R. D. FERDMAN¹⁰, E. FONSECA⁷, N. GARVER-DANIELS¹¹, M. E. GONZALEZ^{7,12}, F. JENET¹³, G. JONES¹⁴, M. L. JONES¹¹, V. M. KASPI¹⁰, M. KOOP⁴, M. T. LAM², T. J. W. LAZIO⁹, L. LEVIN¹¹, A. N. LOMMEN⁵, D. R. LORIMER¹¹, J. LUO¹³, R. S. LYNCH¹⁵, D. R. MADISON^{2,16,28}, M. A. MCLAUGHLIN¹¹, S. T. MCWILLIAMS¹¹, C. M. F. MINGARELLI^{17,18,30}, D. J. NICE¹⁹, N. PALLIYAGURU¹¹, T. T. PENNUCCI²⁰, S. M. RANSOM¹⁶, L. SAMPSON⁶, S. A. SANIDAS^{21,22}, A. SESANA²³, X. SIEMENS²⁴, J. SIMON²⁴, I. H. STAIRS⁷, D. R. STINEBRING²⁵, K. STOVALL²⁶, J. SWIGGUM¹¹, S. R. TAYLOR⁹, M. VALLISNERI⁹, R. VAN HAASTEREN^{9,29}, Y. WANG²⁷, AND W. W. ZHU^{7,18}

recall Lucio Mayer's Talk

Max-Planck-Institut

für Radioastronomie

Stochastic background from SMBH mergers

[Sesana et al. 2012, Ravi et al. 2014, Burke-Spolaor 2015]

Shape of the spectrum

CrossMark

THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

Astrophysical Extraction

One or the other

Typical densities of massive elliptical galaxies at the MBH influence radius is $10^3 M_{\odot} pc^{-3}$,

Astrophysical Extraction

Get density of stars in SMBH environment, and accretion rate for an f_{turn} (Arzoumanian +2016) Caltec

Time to detection?

- Given A<1e-15, how long to detection?
- Large, expanding PTAs, e.g. NANOGrav, will detect in < 10 yrs
- blue line = no stalling, red line = 90% stalling, dashed line = 1/11yr turnover due to stellar hardening
- More: arXiv:1602.06301

Taylor, Vallisneri, Ellis, CMFM, van Haasteren, Lazio, ApJL (2016)

New Results: cosmic strings

THE ASTROPHYSICAL JOURNAL, 821:13 (23pp), 2016 April 10 © 2016. The American Astronomical Society. All rights reserved. doi:10.3847/0004-637X/821/1/13

THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

Z. ARZOUMANIAN¹, A. BRAZIER², S. BURKE-SPOLAOR^{3,28}, S. J. CHAMBERLIN⁴, S. CHATTERJEE², B. CHRISTY⁵, J. M. CORDES², N. J. CORNISH⁶, K. CROWTER⁷, P. B. DEMOREST³, X. DENG⁴, T. DOLCH^{2,8}, J. A. ELLIS^{9,29}, R. D. FERDMAN¹⁰, E. FONSECA⁷, N. GARVER-DANIELS¹¹, M. E. GONZALEZ^{7,12}, F. JENET¹³, G. JONES¹⁴, M. L. JONES¹¹, V. M. KASPI¹⁰, M. KOOP⁴, M. T. LAM², T. J. W. LAZIO⁹, L. LEVIN¹¹, A. N. LOMMEN⁵, D. R. LORIMER¹¹, J. LUO¹³, R. S. LYNCH¹⁵, D. R. MADISON^{2,16,28}, M. A. MCLAUGHLIN¹¹, S. T. MCWILLIAMS¹¹, C. M. F. MINGARELLI^{17,18,30}, D. J. NICE¹⁹, N. PALLIYAGURU¹¹, T. T. PENNUCCI²⁰, S. M. RANSOM¹⁶, L. SAMPSON⁶, S. A. SANIDAS^{21,22}, A. SESANA²³, X. SIEMENS²⁴, J. SIMON²⁴, I. H. STAIRS⁷, D. R. STINEBRING²⁵, K. STOVALL²⁶, J. SWIGGUM¹¹, S. R. TAYLOR⁹, M. VALLISNERI⁹, R. VAN HAASTEREN^{9,29}, Y. WANG²⁷, AND W. W. ZHU^{7,18}

recall Sotiris Sanidas talk Cosmic (super)Strings

- Loops decay via GW emission, creating background 10⁻¹⁶ Hz -10⁹ Hz, depending on size of loops created
- Create a background which could be detected by PTAs; place limits on string tension

C. Ringeval, F. Bouchet

NANOGrav 9-yr Results

- Both the amplitude and spectral slope information of the GWB limits were used to construct the limits.
- Nambu-Goto (field theory strings) with p=1
- 4x better than limit by *Planck* + Atacama Cosmology Telescope + SouthPoleTelescope

In SI units, linear density of string is 10^20 kg/m.

New Results: Primordial Backgrounds

PHYSICAL REVIEW X 6, 011035 (2016)

Gravitational-Wave Cosmology across 29 Decades in Frequency

Paul D. Lasky,^{1*} Chiara M. F. Mingarelli,^{2,3} Tristan L. Smith,⁴ John T. Giblin, Jr.,^{5,6} Eric Thrane,¹ Daniel J. Reardon,¹ Robert Caldwell,⁷ Matthew Bailes,⁸ N. D. Ramesh Bhat,⁹ Sarah Burke-Spolaor,¹⁰ Shi Dai,^{11,12} James Dempsey,¹³ George Hobbs,¹¹ Matthew Kerr,¹¹ Yuri Levin,¹ Richard N. Manchester,¹¹ Stefan Osłowski,^{14,3} Vikram Ravi,¹⁵ Pablo A. Rosado,⁸ Ryan M. Shannon,^{11,9} Renée Spiewak,¹⁶ Willem van Straten,⁸ Lawrence Toomey,¹¹ Jingbo Wang,¹⁷ Linqing Wen,¹⁸ Xiaopeng You,¹⁹ and Xingjiang Zhu¹⁸

recall Angelo Ricciardone's talk Primordial Background

- Primordial radiation can manifest as a contribution to the present day GW energy density $\Omega_{\rm gw}(f)$
- GWB spectrum directly related to the primordial tensor spectral index n_t, tensor-to-scalar ratio "r"
- non-standard evolution of the Universe during inflation or non-standard power in GW modes when exiting horizon can produce blue spectra
- non-inflationary theories e.g. ekpyrosis + stringgas also predict blue spectra

$$\Omega_{\rm gw}(f) = \Omega_{\rm gw}^{\rm CMB} \left(\frac{f}{f_{\rm CMB}}\right)^{n_t} \left[\frac{1}{2} \left(\frac{f_{\rm eq}}{f}\right)^2 + \frac{16}{9}\right]$$

e.g. Turner, White, Lindsey (1993); Smith, Kamionkowski, Cooray (2008) Caltech

Primordial background: Better together

Lasky, **CMFM**, Smith, Thrane, Giblin, Caldwell + (2016)

Primordial background: Better together

Lasky, **CMFM**, Smith, Thrane, Giblin, Caldwell + (2016)

Future Directions

Introducing Anisotropy

- residuals $\propto \int_{S^2} d\hat{\Omega}$ (power distribution x response)
- Nearby and/or loud sources may introduce anisotropy
- CMB anisotropy on very small scales, GWB anisotropy large-scale (?)

für Radioastronom

CMFM + for NANOGrav, in prep

pulsars ++

How much anisotropy?

Red dashed line shows 95% upper limit on strain amplitude

• 32% GW power contained in higher multipoles, EPTA 40%.

Detection: Bayes Factors

- To make us credible, we need to show how our signal improves over time
- Preliminary Bayes factor results using the Savage-Dickey ratio
 - ratio of the marginal posterior density and the prior density evaluated in noise regime

	Description	Bayes Factor
	anisotropy: (signal + noise) vs noise only	0.6
	anisotropic vs isotropic	0.8
\bigwedge	(isotropic + noise) vs noise only	0.5
ax-Planck-Institut r Radioastronomie	CMFM + for NANOGrav, in prep	Caltech

- PTA interdisciplinary science experiment: radio astronomy, GWB +anisotropy+CW, galaxy evolution, SMBH env, ISM, cosmology
- Rule out sub-centiparsec binaries with $M_c > 10^9$ M out to 25 Mpc; with $M_c > 10^{10}$ M: out to 1 Gpc (z ≈ 0.2) for f < 10 nHz
- Already placing astrophysical constraints on SMBHB environments
- Best cosmic string tension limits, 4x more constraining that combined CMB+ ACT + SPTpol measurements
- New: first NANOGrav limit for stochastic background anisotropy, in preparation
- **Detection** expected in 7-10 years, evidence for GWB soon

