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Introduction: the challenge of modelling EMRI evolution
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The challenges of modelling EMRIs

Challenge 1: relativistic
EMRIs are highly relativistic r ∼ GM

c2 .
Can’t use post-Newtonian theory.

Challenge 2: lengthscales
Wildly disparate length scales.
Gm
c2 : GM

c2 ∼ 1 : 105.
Can’t use numerical relativity.

Challenge 3: timescales
EMRIs evolve very slowly. A typically EMRI will spend ∼ M

m ∼ 105 orbits in the LISA
band. Need a model that is accurate to ∼ 105 wave cycles!
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The “Capra” programme

19th Capra meeting (2016) participants

Goals
• model EMRI evolution accurate to ∼ 1 radian over ∼ 105 orbits.
• include general eccentricities
• include general inclination
• include effects of spin on primary object
• include effects of spin on secondary object
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Strategy: perturbation theory

“Elk nadeel hep z’n voordeel.”
[Johan Cruijff]

Strategy
Use the smallness of the mass-ratio µ := m

M to our advantage and use it as an expansion
parameter using:

• Black hole perturbation theory
• Multi length scale analysis (matched asymptotics)
• Multi time scale analysis

How far do we need to go?
• µ = 0 test-mass limit, geodesics in black hole geometry of primary, no evolution.
• phase accurate to ∼ µ−1: Adiabatic approximation “0PA”. Only needs orbital
average change of energy, angular momentum, etc.

• ∼ µ−1/2 “ 1
2PA: Orbital resonances, amplify local “self-force effects”.

• ∼ µ0 “1PA”: Self-forced evolution. Needs:
1 “first order self-force”
2 “spin-force”
3 second order adiabatic quantities
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Test mass limit: Geodesic equations
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Geodesics in Kerr spacetime

Constants of Motion
Geodesics in Kerr spacetime are characterized by
three constants of motion: [Carter, 1968]

1 Energy, E
2 Angular momentum, Lz

3 Carter constant, Q, (related to total angular momentum)

Orbital phases
Position along the orbit is described by three in-
dependently evolving phases:

1 qφ: related to azimuthal position

2 qr : related to radial motion

3 qz : related to oscillations around equator

Analytic solutions
Analytic solutions are
available:

• [Fujita&Hikida, 2009]

• [Hackmann et al., 2008,2010]
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Motion of secondary spin

Motion of test spin
• de Sitter precession
(geodetic effect)

• Lense-Thirring effect

Parallel transport
• Parallel transport equations can be numerically integrated once geodesic is known.
• No known generic analytic solutions.
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Adiabatic approximation

Modelling EMRIs using Self-Force Maarten van de Meent



Adiabatic approximation

Averaged fluxes
The (long term) average rate of change of the constants of motion can be gauged by
measuring the GW flux towards infinity and into the primary black hole.

• 〈Ė〉 from the energy flux.
• 〈L̇z〉 from the angular momentum flux.
• 〈Q̇〉 see [Sago et al., 2006]

Evolution: osculating geodesics
At any instant the inspiral is tangent to some geodesic. Instantaneous values of 〈Ė〉,
〈L̇z〉, and 〈Q̇〉 are obtained by solving Teukolsky equation sourced by geodesic.

State-of-the-art
• Flux calculations for sourced by generic orbits in Kerr spacetime.

[Drasco & Hughes, 2006][Fujita, Hikida & Tagoshi, 2009].
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1/2 PA corrections: resonances
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Resonant orbits

Generic

vs

Resonant

Resonances
Resonances occur when two or more of the independent orbital phase evolutions “sync”
up in rational ratio, allowing coherent secular build up of otherwise oscillatory effects.
Occur generically in inclined inspirals, and mostly within the eLISA band.[see poster C. Berry]
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Effects of Resonances

rz-resonances
• Coherent build of oscillatory self-force effects
leads to jumps in constants of motion.[Flanagan&
Hinderer, 2012]

• Size of jump is sensitive to orbital phases. Can
be obtained from averaged fluxes on resonant
geodesics.[MvdM, 2013]

• “Resonant locking” unlikely. [MvdM, 2013]

[Flanagan& Hinderer, 2012]

[MvdM, 2014]

rφ- and zφ- resonances[Hirata, 2012][MvdM, 2014]

Resonances involving φ motion:
• Cannot affect evolution of “intrinsic”
orbital parameters.

• Can affect “extrinsic” parameters of EMRI
systems such as CoM velocity (“Kicks”)

Modelling EMRIs using Self-Force Maarten van de Meent



Effects of Resonances

rz-resonances
• Coherent build of oscillatory self-force effects
leads to jumps in constants of motion.[Flanagan&
Hinderer, 2012]

• Size of jump is sensitive to orbital phases. Can
be obtained from averaged fluxes on resonant
geodesics.[MvdM, 2013]

• “Resonant locking” unlikely. [MvdM, 2013]

[Flanagan& Hinderer, 2012]

[MvdM, 2014]

rφ- and zφ- resonances[Hirata, 2012][MvdM, 2014]

Resonances involving φ motion:
• Cannot affect evolution of “intrinsic”
orbital parameters.

• Can affect “extrinsic” parameters of EMRI
systems such as CoM velocity (“Kicks”)

Modelling EMRIs using Self-Force Maarten van de Meent



1 PA corrections: Self-force
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Matched asymptotic expansions
[Mino, Sasaki & Tanaka, 1997] [Poisson, 2003]

far zone
Kerr geometry of primary plus pertur-
bation generated by secondary.

near zone
Kerr geometry of secondary plus pertur-
bation generated by primary.

Matching identifies
• effective worldline of secondary in far zone.
• source for perturbation in far zone (point particle).
• regular part of (singular) perturbation in far zone responsible for backreaction on
effective worldline (gravitational self-force & spin-force).
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Spin force

Myron Mathisson Achilles Papapetrou

Mathisson-Papapetrou spin-force
• force induced on geodesic by the presence of spin on test object.
• first order correction in µ
• first derived by Papapetrou [Papapetrou, 1951].
• analytic expression in terms of position, velocity, and spin-vector.
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Gravitational self-force: formalism

MiSaTaQuWa formula
[Mino,Sasaki&Tanaka,1996][Quinn&Wald,1996]

D
dτ

xα = µFα[hR]

hR is “regular” part of (retarded) metric perturbation
produced by point particle.

Methods for obtaining regular part
1 Mode-sum regularization [Barack&Ori,2001]

2 Effective source methods [Barack&Golbourn,2008]

3 Green’s function methods [Mino, Sasaki & Tanaka, 1996]
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Calculating the GSF: Schwarzschild

Time domain
• Decompose field equations in
spherical harmonics.

• Numerically solve system of
1 + 1D PDEs on a grid.

• [Barack, Lousto, Sago]

• 2+1D and 3+1D methods also explored

Frequency domain
• Further decompose equations in
Fourier modes.

• Numerically solve system of ODEs.
• [Barack, Burko, Detweiler, Warburton, Akcay,

Kavanagh, Ottewill, Evans, Hopper, ...]

State-of-the-art
• Self-force calculations using a wide variety of methods (Time domain, frequency
domain, mode-sum, effective source, etc.)

• eccentricities up to . 0.8. [Osburn, Warburton& Evans, 2016]

Modelling EMRIs using Self-Force Maarten van de Meent



Calculating the GSF: Kerr

The problem with Kerr
No spherical symmetry. Field equations do not decouple in “spherical” harmonics.

Time domain
• Decompose field equations in
azimuthal m-modes.

• Numerically solve system of
2 + 1D PDEs on a grid.

• [Dolan, Wardell, Barack, Thornburg]

• Issues with numerically unstable
gauge modes

Frequency domain
• Teukolsky equation for Weyl scalars
ψ0 and ψ4 does decouple in Fourier
modes.[Teukolsky,1972]

• Can be solved using semi-analytical
methods.[Mano,Suzuki&Tagasugi,1996]

• Metric perturbation can be
reconstructed from ψ0 and ψ4 in
radiation gauge.[Chrzanowski,Cohen,Kegeles,
1970s]

• [Friedman, Keidl, Shah, MvdM, ...]

State-of-the-art
• GSF on eccentric equatorial orbits [MvdM, 2016]

• Generic orbits... (coming soon)
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Validation

Invariants
• Energy & angular momentum
fluxes

• Detweiler-Barack-Sago redshift
• ISCO shift
• Periapsis precession
• Spin precession (“self-torque”)
• Tidal invariants

Crosschecks with ...
• Other self-force calculations
(different method, gauge, etc.)

• post-Newtonian theory
• Numerical relativity
• Effective-One-Body models
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Status of second order calculations

Second order challenge
• Second order GSF essential ingredient for 1PA evolution.
• Technical formalism in place [Pound, Rosenthal, Gralla, Detweiler,...]

• Challenges in “UV”
• Challenges in “IR”

Status
First numerical calculations (Schwarzschild circular orbits) expected “soon”.
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Inspiral evolution
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Self-forced inspirals: Schwarzschild

[Warburton, Akcay, Barack, Gair & Sago, 2012] [Osburn, Warburton & Evans, 2016]
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Status overview
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Status of calculations

Schwarschild Kerr

circ ecc circ ecc incl

Geodesics (analytic) [Hackmann & Lammerzahl, 2008] [Fujita & Hikida, 2009]
[Hackmann et al, 2010]

Adiabatic
orbit

[Shibata et al, 1994] [Hughes, 1999]
[Cutler et al, 1994]

[Drasco & Hughes, 2006]

evolution
[Glamp. & Ken., 2002] [Hughes, 2001]

to do

1
2 PA: resonances

[Flanagan & Hinderer, 2012]
[Flanagan, Hughes & Ruangsri, 2014]
[MvdM, 2014]

1PA:

1GSF [Barack & Sago, 2007] [Barack & Sago, 2010] [Shah et al, 2012] [MvdM & Shah,2015]
[MvdM, 2016] in progress

2GSF in progress to do to do

spin force [Papapetrou, 1951] [Papapetrou, 1951]

evolution [Warburton et al, 2012]
[Osburn et al, 2015] to do
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Conclusions

Status
• Formalism mostly in place
• 1GSF calculations in Schwarzschild
now routine

• 1GSF in Kerr now available for
equatorial orbits

• First self-forced inspirals

To do...
• Numerical 2GSF calculations
(soon...)

• 1GSF on Kerr generic orbits
(soon...)

• self-forced inspirals in Kerr
• include secondary spin effects &
2GSF

• waveforms

The End

Thank you for listening!
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