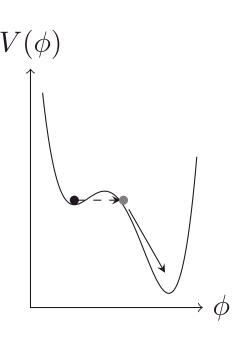
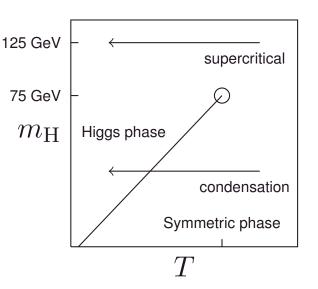


Acoustic waves and detectability of first-order phase transitions


David J. Weir

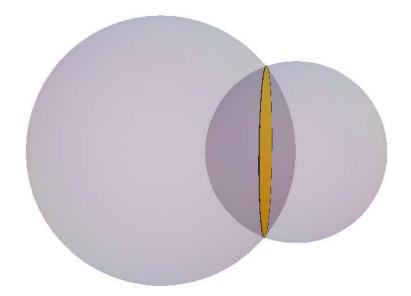

University of Helsinki

LISA Symposium, 7 September 2016

Motivation and context

- In first order PTs bubbles nucleate, grow and collide; collisions produce gravitational waves
- Standard Model EW PT is a crossover, but first order generic in extensions (singlet, 2HDM, ...) Andersen, Laine *et al.*, Kozaczuk *et al.*, Kamada and Yamada, Carena *et al.*, Bödeker *et al.*, Damgaard *et al.*
- First order PT around the EW scale *could* give right conditions for baryogenesis (but would then not give a good signal for GWs)
- Today: concentrate on simulations of thermal phase transitions at EW scale. What physics can we extract from the GW power spectrum?

- Bubbles nucleate, bubble walls experience friction, energy goes into plasma, then:
 - 1. $h^2\Omega_{\phi}$: Bubble walls and shocks collide 'envelope phase'
 - 2. $h^2\Omega_{sw}$: Sound waves set up after bubbles have collided, before expansion dilutes KE 'acoustic phase'
 - 3. $h^2\Omega_{turb}$: MHD turbulence 'turbulent phase'
- These sources then add together to give the observed GW power:

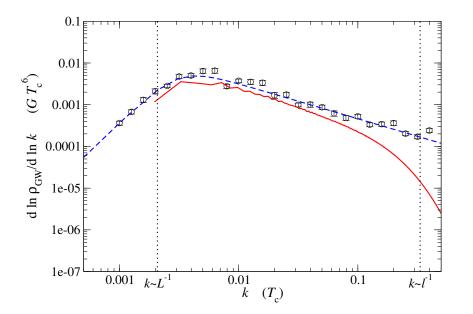

$$h^2 \Omega_{\mathrm{GW}} pprox h^2 \Omega_{\phi} + h^2 \Omega_{\mathrm{sw}} + h^2 \Omega_{\mathrm{turb}}$$

- Each phase's contribution depends on the nature of the phase transition.
- Now: explore steps 1-2 through two types of simulations:
 - 1. The 'envelope approximation' $\rightarrow h^2 \Omega_{\phi}$
 - 2. A field ϕ ('Higgs') coupled by friction to a fluid U^{μ} ('plasma') $\rightarrow h^2 \Omega_{sw}$

1: Envelope [and thin wall] approximation

Kosowsky, Turner and Watkins; Kamionkowski, Kamionkowsky and Turner

- Thin, hollow bubbles, no fluid
- Bubbles expand with velocity $v_{\rm w}$
- Stress-energy tensor $\propto R^3$ on wall
- Overlapping bubbles \rightarrow GWs
- Keep track of solid angle
- Collided portions of bubbles disappear, sourcing gravitational waves
- Resulting power spectrum is simple
 - One length scale
 (average bubble radius R_{*})
 - Two power laws (ω^3 , $\sim \omega^{-1}$)
 - Amplitude
 - \Rightarrow 4 numbers define spectral form

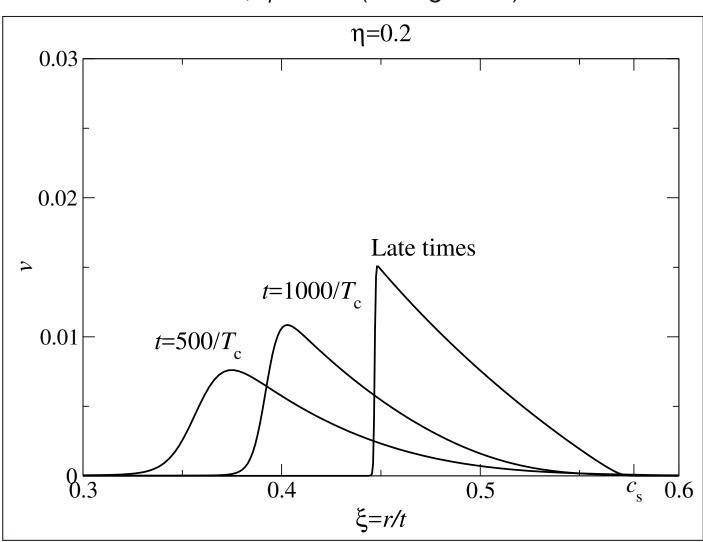


1: Making predictions with the envelope approximation

Espinosa, Konstandin, No and Servant; Huber and Konstandin

4-5 numbers parametrise the transition:

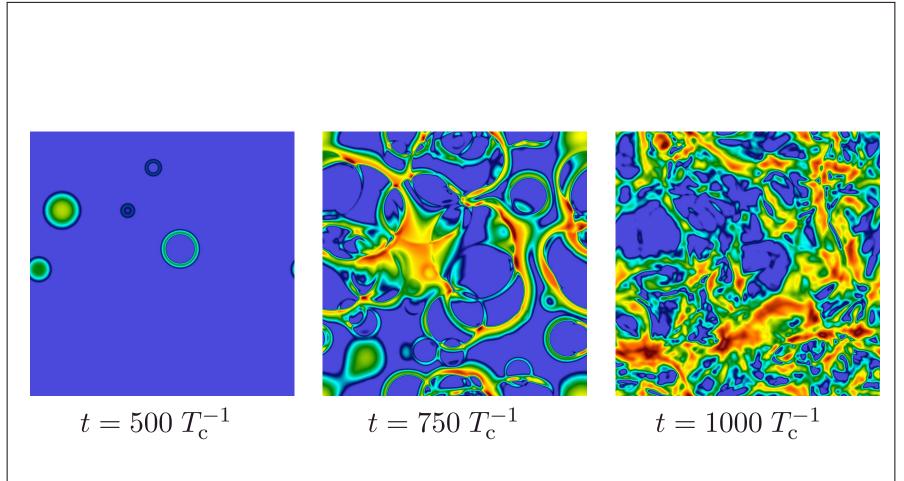
- α_{T_*} , vacuum energy fraction
- $v_{\rm w}$, bubble wall speed
- κ_{ϕ} , conversion 'efficiency' into gradient energy $(\nabla \phi)^2$
- Transition rate:
 - H_* , Hubble rate at transition
 - β , bubble nucleation rate
 - ightarrow ansatz for $h^2\Omega_\phi$



NB: applied to colliding shocks *instead of* walls ($\kappa = \kappa_f$), energy in GWs is

$$\rho_{\rm GW} \propto \frac{0.11 v_{\rm w}^3}{0.42 + v_{\rm w}^2} \left(\frac{H_*}{\beta}\right)^2 \frac{\kappa_{\rm f}^2 \alpha^2}{(\alpha + 1)^2}$$

assumes the shocks are **thin** and disappear after the bubbles collide: this is an underestimate; the dominant source from the fluid KE is sound waves...


2: Velocity profile development - deflagration [optional movie]

Here, $\eta = 0.2$ (deflagration)

2: Simulation slice example [optional movie]

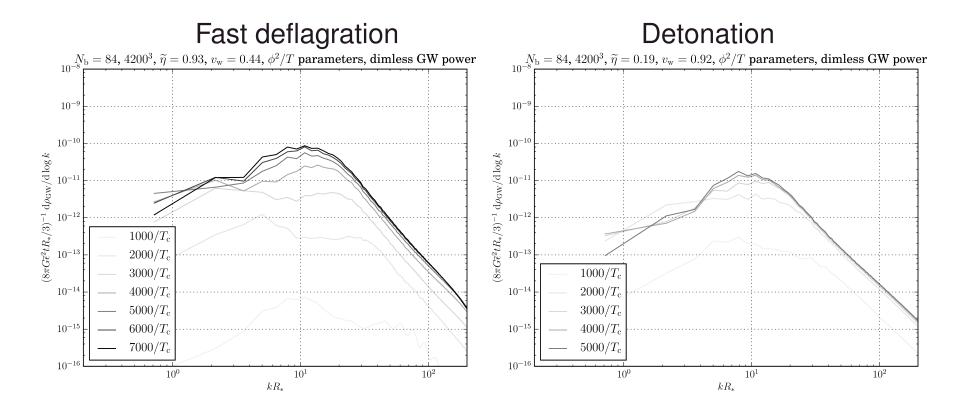
Simulations at 1024^3 , deflagration, fluid kinetic energy density, \sim 250 bubbles

- Does the acoustic source matter?
 - Sound is damped by (bulk and) shear viscosity Arnold, Dogan and Moore; Arnold, Moore and Yaffe

$$\left(\frac{4}{3}\eta_{\rm s}+\zeta\right)\nabla^2 V^i_{\parallel}+\ldots\Rightarrow \tau_\eta(R)\sim \frac{R^2\epsilon}{\eta_{\rm s}}$$

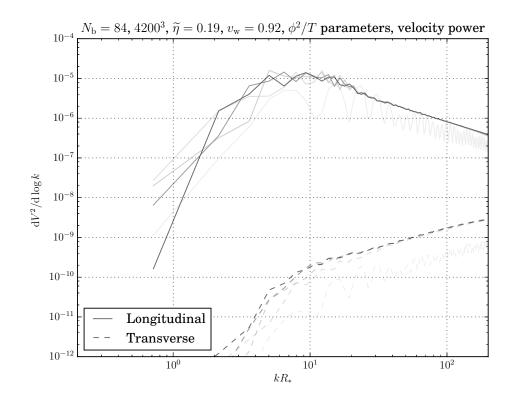
• Compared to $\tau_{H_*} \sim H_*^{-1}$, on length scales

$$R^2 \gg \frac{1}{H_*} \frac{\eta_{\rm s}}{\epsilon} \sim 10^{-11} \frac{v_{\rm w}}{H_*} \left(\frac{T_{\rm c}}{100 \,{\rm GeV}}\right)$$


the Hubble damping is faster than shear viscosity damping.

- Does the acoustic source enhance GWs?
 - Yes, we have

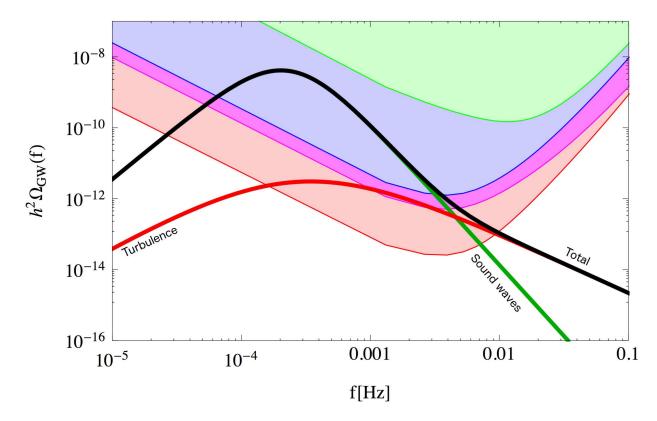
$$\Omega_{\rm GW} \approx \left(\frac{\kappa\alpha}{\alpha+1}\right)^2 (H_*\tau_{H_*})(H_*\xi_{\rm f}) \Rightarrow \frac{\Omega_{\rm GW}}{\Omega_{GW}^{\rm envelope}} \gtrsim 60 \frac{\beta}{H_*}$$


2: GW power spectra and power laws

• Latest simulation results (1M hours per run, 4200^3 simulation volume):

- Approximate ω^{-3} to ω^{-4} power spectrum at high ω
- Expect causal ω^3 at low ω
- Curves scaled by t: source 'on' continuously until turbulence/expansion
- ightarrow power law ansatz for $h^2 \Omega_{
 m sw}$

3: Transverse versus longitudinal modes – turbulence?



- Weak transition (small α): physics is linear; most power is in the longitudinal modes – acoustic waves, not turbulence
- Need stronger transitions or longer, larger simulations to model turbulence
- Use results from the literature Caprini, Durrer and Servant
- ightarrow power law ansatz for $h^2 \Omega_{
 m turb}$

Putting it all together - $h^2\Omega_{gw}$

- We have three sources, $pprox h^2 \Omega_{\phi}$, $h^2 \Omega_{
 m sw}$, $h^2 \Omega_{
 m turb}$
- We know how they vary as a function of T_* , α_T , $v_{
 m w}$, β
- Predict whether LISA can detect PT given a certain model

(example with $T_* = 100 \text{GeV}$, $\alpha_{T_*} = 0.5$, $v_w = 0.95$, $\beta/H_* = 10$)

Check out eLISA CosWG report: JCAP 1604 (2016) 001 [arXiv:1512.06239]

• Now:

- Have a good understanding of what happened during a first order PT, and implications for GWs
- Recent work shows source is stronger than previously thought

 acoustic source gives large enhancement
- Hence many models yielding first order EWPTs can produce observable gravitational waves

- More to do:
 - Strong transitions, turbulence, instabilities
 - Wall velocities; connections with baryogenesis