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ABSTRACT

The gravitational waves emitted by 
binary systems with extreme- or 
intermediate- mass ratios carry 
unique astrophysical information 
expected to be detected by the next 
generation of gravitational wave 
detectors. The detection of these 
binaries rely on an accurate 
modelling of the gravitational self-
force that drives their orbital 
evolution. Although the theoretical 
formalism to compute the self-force 
has been fully developed, the 
mathematical tools needed to 
implement it are under development, 
and the self-force computation is still 
an open problem. The main obstacle 
is the singular nature of the gauge 
where the metric perturbations are 
usually computed, making the self-
force calculation computationally 
challenging.  

We present here a frequency-domain 
implementation of the particle-
without-particle (PwP) technique that 
was previously developed for the 
computation of the scalar self-force –
a helpful testbed for the gravitational 
self-force. We expect that this will 
yield significant improvements in 
computational time and hope that it 
will provide useful hints for 
circumventing the gauge singularity 
issues and ultimately computing the 
metric perturbations in the full 
gravitational case.

The full solution has to be found numerically, but the 
presence of singularities makes the task difficult. To 
circumvent this, the PwP [3–5] splits the computational 
domain into two disjoint regions whereby any non-
singular quantity               is decomposed as

and we denote by                                                     its jump 
across the particle location. Then we get homogeneous 
equations together with jump conditions for the fields:

where        is proportional (up to a factor depending on 
the particle location) to        .

We use a pseudospectral collocation method to 
find a numerical solution           to the homogeneous 
ODE from the horizon to apocenter with arbitrary 
BCs at the latter, and           from the pericenter to 
spatial infinity with arbitrary BCs at the former. Then 
the solution is                                                                    
where            are scaling coefficients determined by 
solving a linear system which arises from the jump 
conditions. Schematically:

We consider a simplified EMRI model: the SCO is 
a charged scalar particle (with charge    associated to 
a scalar field    ) orbiting a non-rotating MBH (with a 
fixed geometry, the Schwarzschild metric         ) along 
a geodesic     (with worldline      and 4-velocity      ). 
The field equation and EOM are respectively [1]:

The field’s harmonic modes                   decouple, 
leading to a wave-like PDE for                        :

where                                                     ,            is the 
“Regge-Wheeler potential,”         is the source term 
coefficient, proportional to     and dependent on the 
particle location, and      the particle radial location.

Once the field is solved for, its singular part must 
be subtracted (via “mode-sum regilarisation” [2]).

Extreme-Mass-Ratio Inspirals (EMRIs) are one of 
the main sources of gravitational waves (GWs) for 
space-based detectors like the eLISA mission. EMRIs 
are binary systems which consist of a stellar compact 
object (SCO; with a mass       ) orbiting a massive 
black hole (MBH; with a mass      ).

The challenge in modeling EMRIs is to compute 
the perturbations generated by the SCO in the 
(background) gravitational field of the MBH, and 
how these perturbations affect the motion of the SCO 
itself. The most extended approach [1] consists in 
modelling the SCO by using a point-like description 
and then, to describe the radiation reaction effects on 
the dynamics as the action of a local self-force that is 
responsible for the deviations from geodesic motion.
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FREQUENCY DOMAIN

Since we have bound orbits, we can expand the fields in 
discrete Fourier series, making the field equations ODEs:

supplemented by appropriate (non-reflecting) BCs:

and jump conditions:

RESULTS AND WORK IN PROGRESS

Once the fields are computed numerically, their 
value can be used to calculate the self-force.

• Thus far, using this method, the known value of 
the self-force has been recovered for circular orbits 
(in agreement with the PwP in time-domain [3–5] 
and the results of other methods in the literature).

• We are working on extending this to generic 
(eccentric) orbits.

• We aim to also extend this method to rotating 
black holes (the Kerr spacetime).
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