A frequency-domain implementation of the particle-without-particle approach to EMRIs

Marius Oltean1,2,3,4,*, Carlos F. Sopuerta1 and Alessandro D.A.M. Spallicci3,4

1Institut de Ciències de l’Espai (IEEC-CSIC), Campus Universitat Autònoma de Barcelona, Spain, 2Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, Spain, 3Observatoire des Sciences de l’Univers en région Centre, Université d’Orléans, France, 4Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, CNRS, France

INTRODUCTION

Extreme-Mass-Ratio Inspiral (EMRI) systems are one of the main sources of gravitational waves (GWs) for ground- and space-based detectors like the eLISA mission. EMRIs are binary systems which consist of a stellar compact object (SCO) with mass m_* orbiting a massive black hole (MBH) with a mass M_\bullet. The mass ratio $q = m_*/M_\bullet$ is the singular nature of the gauge where the metric perturbations are usually computed, making the self-force calculation computationally challenging.

We present here a frequency-domain implementation of the particle-without-particle (PWP) technique that was previously developed for the computation of the scalar self-force—helpful for tests for the gravitational self-force. We expect that this will yield significant improvements in computational time and hope that it will provide useful hints towards circumventing the gauge singularity issues and ultimately computing the self-force.

SCALAR SELF-FORCE

We consider a simplified EMRI model: the SCO is a charged scalar particle (with charge q) orbiting a non-rotating MBH (with a fixed geometry, the Schwarzschild metric g_{Sch}) along a geodesic γ (with worldline z^μ and 4-velocity u^μ). The field equation and EOM are respectively [1] and jump conditions:

$$\begin{align*}
\left(\Box + V_j(r)\right)\psi^{(m)} &= -g^{(m)}\delta(r - r_p(t))
\end{align*}$$

FREQUENCY DOMAIN

Since we have bound orbits, we can expand the fields in discrete Fourier series, making the field equations ODEs:

$$\begin{align*}
\psi_n^{(m)}(t, r) &= e^{-in\omega t} \sum_{m=-n}^{n} e^{-im\phi} R_n^{(m)}(r)
\end{align*}$$

NUMERICAL IMPLEMENTATION

We use a pseudospectral collocation method to find a numerical solution $R_n^{(m)}$ to the homogeneous ODE from the horizon to apocenter with arbitrary BCs at the latter, and R_n^{+} from the pericenter to spatial infinity with arbitrary BCs at the former. The solution is $R_n = C_n R_n^{+} + C_n^{\text{reg}} R_n^{\text{reg}}$, where C_n^{reg} are scaling coefficients determined by solving a linear system which arises from the jump conditions. Schematically:

RESULTS AND WORK IN PROGRESS

Once the fields are computed numerically, their value can be used to calculate the self-force.

- Thus far, using this method, the known value of the self-force has been recovered for circular orbits (in agreement with the PWP in time-domain [3–5] and the results of other methods in the literature).
- We are working on extending this to generic (eccentric) orbits.
- We aim to also extend this method to rotating black holes (the Kerr spacetime).

REFERENCES