The Engineering of LISA Pathfinder – the quietest Laboratory ever flown in Space

Christian Trenkel, Airbus D&S

XI LISA Symposium, September 2016
The Engineering of LISA Pathfinder – the quietest Laboratory ever flown in Space

Overview:

- Suppression of disturbances on-board the LISA Pathfinder “lab”:
 - Gravitational
 - Accelerations
 - Test Mass Charge
 - Thermal
 - Magnetic

- For each case:
 - Engineering Approach
 - Predicted vs In-flight Performance
 - Implications for LISA

Selected topics presented from an “industrial” perspective

Airbus DS (UK & Germany)
Gravitational Environment (I)

- Main gravitational parameters to be controlled:
 - DC differential and absolute accelerations (linear and angular)
 - Gravitational stiffness
 - AC accelerations

- Engineering approach:
 - Spacecraft design – eg no moving components, material choice
 - Verification by analysis (modelling) based on measured inputs
 - Strict gravitational control throughout manufacture – eg $O(10^4)$ mass measurements
 - Final mass balancing of residual imbalance
Gravitational Environment (II)

- Predicted vs In-flight performance*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pre-flight Estimate</th>
<th>In-flight Measurement</th>
<th>Requirement</th>
<th>Requirement Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ax</td>
<td>-1.7e-10</td>
<td>(1.4±5.0)e-10 (TM1)</td>
<td><1.0e-8</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>-1.8e-10</td>
<td>(-3.9±2.2)e-10 (TM2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ay</td>
<td>-1.5e-9</td>
<td>(-1.0±0.2)e-9 (TM1)</td>
<td><1.0e-8</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>-1.5e-9</td>
<td>(-1.9±0.2)e-9 (TM2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dAx</td>
<td><5.5e-10</td>
<td><1.0e-10</td>
<td><6.5e-10</td>
<td>Yes</td>
</tr>
<tr>
<td>dAy</td>
<td><3.9e-10</td>
<td>5.0e-10</td>
<td><1.1e-9</td>
<td>Yes</td>
</tr>
<tr>
<td>dAz</td>
<td><2.8e-10</td>
<td>0.1e-10</td>
<td><1.85e-9</td>
<td>Yes</td>
</tr>
<tr>
<td>θ</td>
<td>-0.4e-9</td>
<td>-0.6e-9 (TM1)</td>
<td><13.5e-9</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>+0.4e-9</td>
<td>-0.1e-9 (TM2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>+3.1e-9</td>
<td>+2.9e-9 (TM1)</td>
<td><11.5e-9</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>-1.2e-9</td>
<td>-1.3e-9 (TM2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ</td>
<td>+0.8e-9</td>
<td>+1.0e-9 (TM1)</td>
<td><8.0e-9</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>-0.2e-9</td>
<td>-0.1e-9 (TM2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute acceleration in Z parallel to Solar Radiation Pressure – dedicated experiment required to disentangle contributions
Gravitational Environment (III)

- Effect of cold gas depletion (total mass 9.6kg) is well understood:

Slope change as a result of Feed Branch swap:
- Fit “by eye” $6.2 \times 10^{-13} \text{ms}^{-2}/\text{day}$.
- Gravitational prediction $6.6 \times 10^{-13} \text{ms}^{-2}/\text{day}$

- Selective propellant depletion is currently being used to control gravitational environment

Agreement to <10%
Gravitational Environment (IV)

- Pre-flight estimated contribution to acceleration noise **not** realised
 -> dAx significantly better than expected

- Implications for LISA:
 - No improvements to approach necessary
 - Effect of cold gas propellant depletion is understood and manageable – if adopted for LISA

- Considerations and improvements:
 - Moving parts (e.g., periodic High Gain Antenna re-pointing) will need assessment
 - (Partial) verification of gravitational requirements by test could result in time & cost savings, and reduce risks
Accelerations (I)

- Spacecraft (SC) shields Test Masses (TMs) from external disturbances
- Now relative SC – TM motion has to be minimised in order to reduce residual SC – TM couplings
- Engineering approach:
 - Drag-free Attitude Control System (DFACS) – a set of algorithms that controls both TMs and SC in 15DOFs (!)
 - Relies on low-noise sensors & actuators
 - Robust control from initial TM release to Science Mode
Accelerations (II)

- In-flight performance:
 - Initial conditions in orbit much worse than predicted
 - Initial offsets / velocities exceeded by factor up to 60 / 8
 - DFACS was nevertheless robust enough to capture the TMs
 - Transitions to science mode very robust and repeatable
 - Science mode performance better than predicted:
 - Sensor & actuator noise models conservative
 - Offsets and misalignments conservative
Accelerations (III)

- In-flight performance:
 - Relative SC/TM motion can be taken as proxy for residual SC accelerations – imagine that TMs are “perfect” free-fall reference
 - At low frequencies: SC motion many orders of magnitude quieter than Earth surface motion (seismic noise)
Accelerations (IV)

- Implications for LISA:
 - DFACS science mode performance goes a long way towards LISA requirements
 - DFACS performance model has been verified and can be extended for LISA
 - Robustness of mode transitions could be improved further:
 - Uni-directional thruster configuration efficient but limits authority in critical phases. Additional thrusters would enhance margins
 - Margins for suspension actuation should be increased → would account for disturbance uncertainties
 - Excellent low frequency TM isolation – one of the (two) main reasons for going to space!
Test Mass Charge (I)

- Net electrostatic charge on Test Masses (e.g., from cosmic rays) results in unwanted SC – TM interactions → needs to be controlled

- Engineering approach:
 - Charge Management System (CMS):
 - Provides a robust way to reduce unwanted charges on the Test Masses
 - Automatic on-board algorithms to achieve regular discharging without much ground interaction
Test Mass Charge (II)

- Predicted vs In-flight Discharging Performance
 - On-board charge estimation performance in line with pre launch predictions
 - Closed loop discharge control performance also in line with predictions
 - On-board closed loop fast discharge now used regularly for LTP and DRS operations
Test Mass Charge (III)

- Implications for LISA
 - On-board charge estimation has been verified for LISA
 - Very flexible and can be adjusted for the use of different degrees of freedom
 - If possible, optical readout should be used
 - Principle of closed loop discharge control has been verified
 - Robustness of closed loop discharge control could potentially be improved → e.g. optimization of light injection to avoid need for DC biasing
 - Review UV harness installation QA (!)
Thermal Environment (I)

- Thermal stability at low frequency is essential to realise required noise performance
- Engineering approach:
 - L1 orbit – very stable environment
 - Nested SC design – main features:
 - No unit or heater switching during nominal operations
 - Purely passive thermal control (heaters ON or OFF)
 - Extensive thermal test campaigns
Thermal Environment (II)

- In-flight performance
 - Solar Array: very slow drift due to increasing Sun distance
 - LCA Cage: $\approx 10^{-3} \text{K/\sqrt{Hz}}$ at 1mHz
 - Optical Bench: $\leq 3 \times 10^{-5} \text{K/\sqrt{Hz}}$ down to 0.1mHz

\[\Delta T/\Delta t = -0.4 \text{K/6days} \]
Thermal Environment (III)

- Implications for LISA
 - Stable external environment helps – LISA will also benefit from this
 - Solar Array shadowing of spacecraft body essential for thermal stability
- Considerations and potential improvements:
 - “Nested” LPF spacecraft design helps – LISA will have large telescope apertures
 - Combination of (fixed) trim heaters is not as flexible as desired. Quiet PID control is possible.
 - Do not place PCDU near thermally most sensitive equipment (!)
Magnetic Environment (I)

- Non-zero magnetic TM properties couple to local magnetic environment generating acceleration noise. Need to control:
 - DC field and field gradients
 - Fluctuating fields and field gradients
- Approach:
 - By design – avoid magnetic parts / EMC design guidelines
 - Unusual frequency range – extensive test campaign at unit and spacecraft level
Magnetic Environment (II)

- Predicted vs In-flight performance
 - Local DC fields of order 1µT as predicted
 - Low frequency field fluctuations are uniform across SC – can be attributed to Sun.

\[x \sqrt{2}/0.8 \text{m} \]

\[\approx 30 \text{nT/Hz} @ 1\text{mHz} \]

\[\approx 20 \text{nT/m/Hz} @ 1\text{mHz} \]
Magnetic Environment (III)

- Pre-flight estimated contribution to acceleration noise **not** realised
 → Local DC gradient estimate was dominated by measurement uncertainty!

- Implications for LISA
 - No showstoppers / real problems identified
 - The following should be improved:
 - DC magnetic gradient testing (in particular for payload elements in close proximity)
 - Low frequency behaviour of high frequency AC lines should be characterised
 - New equipment (eg TWTA) still needs to be characterised
Summary / Conclusions

- LISA Pathfinder as a laboratory has been demonstrated to be:
 - Well controlled and understood from a gravitational point of view
 - Exceptionally quiet as far as residual accelerations are concerned
 - Extremely quiet from a thermal point of view
 - Sufficiently quiet from a magnetic point of view

- The above has been achieved thanks to a combination of:
 - orbit choice around L1
 - clever Payload & Spacecraft design
 - excellent communication within the whole collaboration
 - a bit of luck 😊

- No problems identified for LISA – although a few details could be improved

We are ready to go and keen to start building LISA!
Thank you!