

Residual gas Brownian noise in LISA PAthfinder

Rita Dolesi University of Trento/ INFN-TIFPA

on behalf of LISA PF Team

Gas damping of the motion of a macroscopic body is characterized by a viscous damping coefficient proportional to the pressure P

$$\beta = \left| \frac{\partial F}{\partial v} \right|$$

 \rightarrow Brownian force noise arises via the fluctuation -dissipation theorem

$$S_F(\omega) = 4kT \operatorname{Re}\left(\frac{\partial F}{\partial v}\right)$$

Increased over that obtained for a TM in an infinite gas volume by a geometric factor **p** related to the constrained geometry TM inside a housing with gaps of size *«*TM side length of s

As demonstrated by simulations and verified with torsion pendulum facility measurements

$$S_{gas_d}^{\frac{1}{2}} = \left(\frac{2\rho P s^2}{m^2} \sqrt{\frac{512\,m_0 k_B T}{\pi}} \left(1 + \frac{\pi}{8}\right)\right)^{\frac{1}{2}}$$

where m_0 is the mass of the residual gas molecules.

Strategies for suppressing Brownian noise

Design the Gravitational Reference Sensor with large gaps surrounding the TM.

UNIVERSITÀ DEGLI STUDI DI TRENTO Dipartimento di Fisica

FIG. 5. Gas damping β^{sim} obtained from the numerical simulation for different test mass side lengths *s* and gap sizes *d*, normalized to the infinite-volume model prediction β^{∞} .

$$\beta_{\rm tr} \approx \frac{\beta_{\rm tr}^{\infty}}{\ln(s/d)(d/s)^2}.$$
 (7)

TM size 46 mm Sensing electrodes at d_x=4 mm d_y=2.9 mm, d_z=3.5mm

Dipartimento di Fisica

0.6

0.5

Design the Gravitational Reference Sensor with large gaps surrounding the TM. Brownian noise Residual gas (<10⁻⁵Pa) damps motion, and causes Brownian noise. In constrained geometries friction is higher than in infinite volume PRL 103, 140601 (2009) x 10⁻⁸ Measurements of with GRS viscous gas damping coefficient 2.5 without GRS Infinite gap mode S $\beta = -\frac{\partial N}{\partial \dot{\varphi}} = \frac{2\mathcal{I}}{\tau}$ β_{4TM} (N m 1 Agreement within 10% with numerical simulations 0.5 3 'n p (Pa) x 10⁻³ Measurements of torque noise ₫ŢŢ₫₩ Difference in measured force noise power within 10% of $\mathrm{S}_N\,[\mathrm{(fN\,m)}^2\,/\,\mathrm{Hz}]$ **Fluctuation-Dissipation Theorem** $\Delta B = 0.06 \text{ nN m s}$ $\Delta B = 0.56 \text{ nN m s}$ prediction frequency [mH $S_{F} = 4k_{R}T\beta$ experimental data best fit $4kT\Delta\beta$

0.1

0.2

0.3

.

0.4

Strategies for suppressing Brownian noise

Low residual gas pressure P around the TM

-dedicated vacuum chamber
-pumping line: vent to space via venting duct
-stringent requirements on outgassing contribution
of all items inside VC
- at least a mild bake-out to decrease outgassing:
1 day at 115C

UNIVERSITÀ DEGLI STUDI DI TRENTO Dipartimento di Fisica

$$P = \frac{1}{C_{ventduct}} \frac{Q_{eff}}{t - t_{vent}} e^{-\frac{\Theta}{T}}$$

 Q_0 is a flow prefactor $\pmb{\theta}$ is the activation energy of the outgassing process

expected P < requirement of 10 microPa down to several μ Pa thanks to decay of the outgassing rate once the system is vented to space.

Residual gas composition? Due to the short and low temperature bake-out likely to be dominated by H_2O (and H_2 .)

Residual gas Brownian noise in LISA PF

Prediction

UNIVERSITÀ DEGLI STUDI DI TRENTO Dipartimento di Fisica

Measurement

White noise dominates most of the frequency band

Residual gas Brownian noise?

How much is the pressure P of the residual gas surrounding the TMs ?

Forces induced by temperature gradients (Isa pathfinder

UNIVERSITÀ DEGLI STUDI

Forces induced by temperature gradients

Forces induced by temperature gradients

R.Dolesi, XI LISA Symposium, Zurich Sept 2016

Residual gas pressure estimation

UNIVERSITÀ DEGLI STUDI DI TRENTO

Dipartimento di Fisica

From simulations\ torsion pendulum test with Electrode Housing prototypes : -we have estimations for the other parameters (calibration error of about 20%) -based also on literature \rightarrow range of values for activation energy Θ (10000K, 20000K) that correspond respectively to H₂O and H₂

our estimation of P is calibrated at 20% and depends upon residual gas composition

UNIVERSITÀ DEGLI STUDI DI TRENTO

