Albert Einstein Institute Max Planck Institute for Gravitational Physics and Leibniz Universität Hannover

LISA Pathfinder Optical Metrology at L1

M Hewitson for the LPF Team LISA Symposium, Zurich September 2016

Content

- OMS Introduction
- Commissioning
- Performance
- Noise budget
- Structural stability
- Long-term performance

The Optical Metrology System on LPF

Assess relative acceleration of test masses by measuring their relative motion using an interferometer

Goal is to measure changes with a precision of a few pm//Hz at millihertz frequencies

The Optical Metrology System

Laser Modulator

Data Management Unit

Reference Laser Unit (RLU)

Nd:YAG laser λ: 1064 nm Power: 45 mW

Modulation

for each of the 4 interferometers...

X1 Interferometer

Measures position and orientation of TM1 w.r.t. OB (SC)

Reference Interferometer

Measures phase fluctuations common to both optical fibres.

Subtracted from all other IFOs in the DMU.

It was a cold, dark night in early January...

- DMU calibration coeffs updated in DMU
- RLU + Laser Assembly redundant chain checkout
 - LA Electronics, B-side, activated
 - DMU to operational mode, OMS processing on
 - Pump diode bench B activated
 - 40 mW RLU output
 - Light detected on some quadrants
- RLU + LA prime chain
 - LA Electronics, A-side, activated
 - Pump diode bench A activated
 - 40 mW RLU output
 - Light detected on some quadrants

- 1. Switch on and checkout of all units
- 2. Actuator scans
- Single beam measurements (spot positions)
- 4. Stabilisation Loops checkout
- 5. RLU performance and operating point
- 6. Initial performance with low contrasts

Projected Optical Powers on the bench

Performance with minimal contrast...

- 1. TM optical alignment after release
- 2. Polarity and gain tests
- 3. Trimming of powers on the bench
- Performance with aligned test masses

Alignment of the optical system

Contrasts before and after alignment

lisa pathfinder

X12: Initial performance with aligned TMs

Source	Coupling	Contribution
Frequency Noise	via arm-length mismatch between measurement and reference beam	~300 um mismatch \Rightarrow
		20 fm/√Hz @ 1Hz
Phasemeter Noise	Quantisation, front-end electronics, etc	~650 nrad/√Hz per channel ⇒ 28 fm/√Hz
RIN	Couples at 2x f _{het}	~0 for correct operating point
RIN @ DC	Not relevant for OMS performance, but creates fluctuating forces on TMs	~2 fm s ⁻² / √Hz @ 0.1 mHz

+ other, less significant sources

Relative Intensity Noise coupling

- RIN @ dc imparts a force on the TMs via momentum transfer from reflected and absorbed photons
- Fluctuations in the laser intensity result in a fluctuating force

Sensing cross-talk

- coupling of TM/SC jitter to differential readout via:
 - TM alignment
 - beam properties
 - PD construction (slits)
- minimise by:

•

G

- subtracting on ground
 - ad-hoc fit, or physical model
- alignment of TMs

Cross-talk in Δg - software subtraction

lisa pathfinder

Noise budget

DWS Noise Budget

G

Stability of OMS performance

lisa pathfinder

Long-term monitoring

Summary

- The optical metrology system on-board LPF is a resounding success
- Performance about x100 better than achieved on ground
- High-stability and reliability
- Very little maintenance required
- High-performance allowed us to explore cross-talk at unexpected levels
- Concepts and design techniques are proven and ready for use in LISA

Thanks to all LPF Team

THE REAL PROPERTY AND INCOME.

on the basis of a decision by the German Bundestag

00

additional material

RIN @ the laser

Noise budget from theoretical considerations

lisa pathfinder