#### The ELM Survey: A Progress Report on the Search for the Most Extreme Binary White Dwarfs

Alexandros Gianninas University of Oklahoma

> LISA Symposium XI September 7, 2016

Collaborators: Mukremin Kilic (University of Oklahoma) Warren R. Brown (Smithsonian Astrophysical Observatory) JJ Hermes (University of North Carolina)

🕛 The UNIVERSITY of OKLAHOMA

#### **EVOLUTION OF STARS**



#### Mass distribution of WDs from SDSS



Tremblay et al. (2011, ApJ, 730, 128)

### WD Mass Distribution as a Function of T<sub>eff</sub>



Gianninas et al. (2011, ApJ, 743, 138)

#### **Common Envelope Evolution**



Iben & Tutukov (1984, ApJ, 54, 335)

#### Before the ELM Survey...

- Very few (18) double WD binaries were known and they had orbital periods from hours to several days
- Supernova la Progenitor SurveY (SPY)

TY of OKLAHOMA

- Radial velocity survey of ~1500 known WDs
- Performed using UVES on the Very Large Telescope (VLT)



#### HE 1414-0848

- 0.71  $M_{\odot}$  + 0.52  $M_{\odot}$  white dwarfs
- Period = 0.518 days (12.43 hrs)

• *SPY:* 

~ 100 new binaries
A handful of merger systems



#### SDSS colors work well for choosing ELM WD candidates



#### SDSS colors work well for choosing ELM WD candidates $\int_{1}^{1} \log g = 7.5$



🕕 The UNIVERSITY of OKLAHOMA

#### SDSS colors work well for choosing ELM WD candidates $1 \log g = 7.5$



Brown et al. (2012, ApJ, 744, 142)



#### SDSS colors work well for choosing ELM WD candidates



Brown et al. (2012, ApJ, 744, 142)

Gianninas et al. (2015, ApJ, 812, 167)

#### Radial Velocity Follow-Up



🕛 The UNIVERSITY of OKLAHOMA

#### P = 5.9 hr binary



Kilic et al. (2010, ApJ, 716, 122)

D The UNIVERSITY of OKLAHOMA

#### P = 1.0 hr binary





Kilic et al. (2010, ApJ, 716, 122)

The UNIVERSITY of OKLAHOMA

#### *J0106-1000: P* = *39 min binary*!



Kilic et al. (2011, MNRAS, 413, L101)

#### ELM Survey so far...

- 88 new ELM WDs of which 76 are in compact binaries with Periods < 1 day</li>
- 40 systems that will merge within a Hubble

#### Lots of new merger systems!



### ELM Survey so far...

- 88 new ELM WDs of which 76 are in compact binaries with Periods < 1 day</li>
- 40 systems that will merge within a Hubble
- Estimated merger rate of 3 x 10<sup>-3</sup> yr<sup>-1</sup> (Brown et al., 2016, ApJ, 824, 46)
  - 40x formation rate of AM CVn (cataclysmic variables)
  - 6-30x rate of Underluminous SN
  - ≈ formation rate of R Cor Bor stars (unusual carbonrich supergiants)

#### WD 0931+444: a new 20-min ELM WD!

- Chosen from a preliminary selection of SDSS DR10 candidates
- The system will merge in less than 9 Myr



#### WD 0931+444 looks like a DA+dM...



Kilic et al. (2014, MNRAS, 441, L1)

#### 8m Gemini data shows the dM is a background object



Time resolved spectroscopy from Gemini North with GMOS



#### Na I doublet

Ηα

Kilic et al. (2014, MNRAS, 441, L1)

#### J0651: the poster child for ELM WDs

- Shortest period ELM WD binary  $\rightarrow P = 12.75$  min!
- During my talk > 2 orbits!
- Eclipsing!



Hermes et al. (2012, ApJ, 757, 21)

### Primary and secondary eclipses clearly detected + ellipsoidal variations





Hermes et al. (2012, ApJ, 757, 21)

## The rate of decay agrees with the prediction of General Relativity!



JJ Hermes (2016, private communication)

#### PSR B1913+16: The Hulse-Taylor pulsar

- Orbital decay of a binary pulsar system (PSR +NS)
- First evidence of GW
- Merger time ≈ 300 Myr
- 1993 Nobel Prize in Physics
- It took 30 years to display the same period shift as J0651 did in 2 years!



Weisberg & Taylor (2005, ASPC, 328, 25)

# ELM WDs are among the loudest gravitational wave verification sources for eLISA/LISA



Kilic et al. (2015, ASSP, 40, 167)

#### **Conclusions & Outlook**

- The ELM Survey has greatly increased the number of known ELM WD binaries and WD merger systems
- The two shortest period systems, J0651 and WD 0931+444, are among the loudest gravitational wave verification sources for LISA
- The ELM Survey continues...
  - ~100-150 candidates in various stages of follow-up
  - Looking to expand the survey to the southern hemisphere... LSST will be very helpful!
  - GAIA