

Cosmic (super)strings Basics

Evolution

GW emission

Cosmic string SGWB

Spectrum

Tonsion limit

eLISA v: PTAs

Parameter space eLISA vs. SKA No. Large loops eLISA vs. SKA No. eLISA performance

Conclusions

CAN eLISA SAVE THE DAY?

Hunting for cosmic strings in the SKA era

Sotiris Sanidas

API, University of Amsterdam

Work with: Richard Battye (JBCA, University of Manchester)

8th September 2016

Cosmic (super)strings

Cosmic (super)strings

ANTON PANNEKOEK

Cosmic (super)strings

- Basics
- Evolution GW emission
- Cosmic string SGWB
- Spectrum
- Modelling
- Tension limits

eLISA v: PTAs

- Parameter space eLISA vs. SKA No. Large loops eLISA vs. SKA No. eLISA performance
- Conclusions

A cosmic string network consists of:

- 1) "Infinite cosmic strings"
- 2) Cosmic string loops

Intercommutation

- Cosmic strings: p = 1
- Cosmic superstrings: $p \in [10^{-3}, 1]$

ANTON PANNEKOER

Cosmic string network evolution

<u>ff</u>

GW emission from cosmic string networks

ANTON PANNEKOE

Cosmic (super)string

Basics

GW emissior

Cosmic strin

Modelling

Tension limit

eLISA vs PTAs

Parameter space eLISA vs. SKA No.: Large loops eLISA vs. SKA No.2 eLISA performance

Conclusions

Loops once formed, decay by radiation emission

GW emission "engines": cusps and kinks

Emission in a series of harmonics (modes) n:

$$f_{\rm n} = 2nc/\ell, \qquad n = 1 \to \infty$$

Also GW emission from:

- Infinite cosmic strings (Kawasaki et al. 2010; Matsui et al. 2016)
- Scaling evolution in the radiation era (Figueroa et al. 2013)

INSTITUTI

The cosmic string SGWB

-6.5r -7.0 og₁₀Ω_{gw}h² -2.2 -8.0 -8.5 -10 5 10 -5 0 log₁₀f (Hz)

INSTITUT

The cosmic string SGWB

-7.0r -7.5 og₁₀Ω_{gw}h⁵ -9.0 -8.5 -9.0^l -10 -5 0

11th International LISA Symposium, University of Zurich, Switzerland

10

5

log₁₀f (Hz)

The cosmic string SGWB

ANTON PANNEKOEK

- Cosmic (super)strings
- Basics
- GW emission
- Cosmic strin SGWB Spectrum Modelling
- Tension limits
- eLISA v PTAs
- Parameter space eLISA vs. SKA No. Large loops eLISA vs. SKA No. eLISA performance
- Conclusions

Questions...

Cosmic (super)strings Basics

ANTON PANNEKOER

- Evolution
- GW emission
- Cosmic strin SGWB Spectrum
- Tension limits
- eLISA v: PTAs
- Parameter space eLISA vs. SKA No.: Large loops eLISA vs. SKA No.: eLISA performance
- Conclusions

- Loop birth-scale α : Nambu-Goto: $\alpha \approx 0.1$ Abelian-Higgs: Microscopic
- Dominant emission mechanism: Cusps? Kinks?
- Intercommutation: Scaling law? Cusp creation?
- Scaling? Is it delayed?
- Effects of *gravitational backreaction*. Affects loop size *and* emission mechanism!

Every work is based on approximations. We need to *detect* something/anything!!!

SGWB modelling

ANTON PANNEKOE

- Cosmic (super)strings
- Basics
- GW emission
- Cosmic string SGWB Spectrum
- Modelling
- Tension limit

eLISA vs PTAs

- Parameter space eLISA vs. SKA No. Large loops eLISA vs. SKA No. eLISA performance
- Conclusions

GW vs. CMB tension limits

- CMB results depend only on inifinite strings very robust
- GW results strongly depend on the inherited assumptions

Generic SGWB formulation (Sanidas et al 2012): Five free parameters

- **Tension**: $G\mu/c^2$
- Loop birth scale: $\alpha \in [0.1 \alpha_{\min}]$ $\alpha_{\min} \approx 10^{-9}$ (PTAs), 10^{-16} (LISA), 10^{-20} (LIGO)
- Intercommutation probability: p (and its scaling law dependence, k) $p = [10^{-3}, 1], k = -0.1 \text{ or } -0.6$
- Loop emission spectrum:
 - i. spectral index q (emission mechanism) cusps: -4/3, kinks:-2
 - ii. emission mode cut-off n_* (gravitational backreaction) cusps: $n_* \in [1, 10^4]$, kinks: $n_* \in [1, 10^3]$
- Conservative No assumptions made!
- Generic and easy to modify (multiple loop birth-scales, delayed scaling, ... bring on your idea!)

ff

ANTON PANNEKOEI

PTA Upper Limits

For upper limits: Only p = 1, $n_* = 1$, and $n_* = 10^4/q = -4/3$ needed

Planck: $G\mu/c^2 < 1.3 \times 10^{-7}$ EPTA: $G\mu/c^2 < 1.3 \times 10^{-7}$ NANOGrav: $G\mu/c^2 < 3.3 \times 10^{-8}$

We are as *robust* as we can be, aware of the *caveats*, and finally *competitive* to CMB results

Lentati et al. 2015 Arzoumanian et al. 2015

GW detectors comparison

ANTON PANNEKOEK

Cosmic (super)string

Evolutio

GW emission

Cosmic string SGWB Spectrum Modelling Tension limits

eLISA vs PTAs

Parameter space eLISA vs. SKA No. Large loops eLISA vs. SKA No. eLISA performance

Conclusions

Sanidas et al. 2013

Half the truth...

eLISA vs. PTAs: Extended parameter space

ANTON PANNEKOER INSTITUT

$$-7.5$$

 -8.0
 -8.0
 -9.0
 -9.5
 $-10.0-10$
 -5
 0
 5
 10

Low-frequency cut-off

$$f_{\min} \approx \frac{1}{\alpha d_{\mathrm{H}}(t_0)}$$

Determined by the largest loops available

PTAs:
$$\alpha_{\min} \approx 10^{-9}$$

eLISA: $\alpha_{\min} \approx 10^{-16}$
LIGO: $\alpha_{\min} \approx 10^{-20}$

eLISA can probe a significantly larger parameter space than PTAs

$$G\mu/c^2 = 10^{-12}$$

$$\alpha = 10^{-12}$$

$$n_* = 1$$

$$p = 1$$

-7.0r

eLISA vs. SKA: $\Omega_{gw}h^2 = 10^{-12}$

ANTON PANNEKOEK

- Evolutio
- GW emission

Cosmic string SGWB

- Spectrum Modelling
- Tension limits

eLISA vs PTAs

- Parameter space eLISA vs. SKA No.1 Large loops eLISA vs. SKA No.2 eLISA performance
- Conclusions

Battye, Sanidas 2016, in prep.

ffA

eLISA vs. SKA: Large loops scenario

ANTON PANNEKOER

Cosmic (super)strings

- Evolutio
- GW emission

Cosmic string SGWB

- Spectrun
- Modelling

eLISA v PTAs

Parameter space eLISA vs. SKA No.* Large loops eLISA vs. SKA No.2 eLISA performance

Conclusions

Battye, Sanidas 2016, in prep.

eLISA vs. SKA: $\Omega_{gw}h^2 = 10^{-14}$

ANTON PANNEKOEK

Cosmic (super)strings

- Evolution
- GW emission

Cosmic string SGWB

- Spectrum
- Tension limits

eLISA v: PTAs

- Parameter space eLISA vs. SKA No Large loops eLISA vs. SKA No eLISA performance
- Conclusions

Battye, Sanidas 2016, in prep.

INSTITUT

eLISA configurations: Performance

From the eLISA Cosmology Working Group report Topological Defects subgroup: Battye, Hindmarsh, Saffin, Sanidas

eLISA configurations: Performance

ANTON PANNEKOE

Cosmic (super)strings

Basics

GW emission

Cosmic string SGWB

Spectrum

Modelling

Tension limits

eLISA v PTAs

Parameter space eLISA vs. SKA No. Large loops eLISA vs. SKA No.

O a se a la se la se a

L4A1M2N2P07D25

Conservative limit: $G\mu/c^2 < 1.0 \times 10^{-9}$ Large loops: $G\mu/c^2 < 1.7 \times 10^{-15}$

L6A1M5N2P07D25

Conservative limit: $G\mu/c^2 < 2.7 \times 10^{-10}$ Large loops: $G\mu/c^2 < 6.4 \times 10^{-17}$

L4A2M5N2P2D28

Conservative limit: $G\mu/c^2 < 1.3 \times 10^{-10}$ Large loops: $G\mu/c^2 < 2.8 \times 10^{-17}$

L6A5M5N2P2D40

Conservative limit: $G\mu/c^2 < 1.4 \times 10^{-11}$ Large loops: $G\mu/c^2 < 4.4 \times 10^{-18}$

Improvement (on conservative upper limits):

L4→L6: ×2 A1→A2: ×3.8 - 4.8 A2→A3: ×4.6 - 5 M2→M5: ×1.6

eLISA CAN save the day!

- ANTON PANNEKOE
 - Cosmic (super)strings
- Basics
- Evolution
- GW emission
- Cosmic string SGWB
- Spectrum
- Modelling
- eLISA vs
- PTAs
- Parameter space eLISA vs. SKA No.1 Large loops eLISA vs. SKA No.2 eLISA performance
- Conclusions

- eLISA will offer:
 - i. Expanded parameter space coverage. Expect the unexpected!
 - ii. Unprecedented capabilities in detecting large loop networks
- The best eLISA configuration will be relatively close to SKA performance, but will offer ~ 5 orders of magnitude better performance in the large loops case.
- In the future, at the high GW sensitivity regime, space-borne interferometers have *no opponent*.
- We must aim for L6A5M5, but if I have to make a choice, let it be in favour of arm length.

Thank You!