

Studies for a Xenon1t Dark Matter Detector - Gamma Background Marijke Haffke University of Zürich

Structure

Ι.	Introduction
	- XENON 1t
	- LVD
II.	Gamma Measurements

III. Background Simulations for Xenon1t

IV. Summary and Outlook

Marijke Haffke Uni Zürich XENON1t-Project

- Next step of Xenon100
- Fiducial Volume mass: 1t
- Mass of Liquid Xenon: 3t
- Goal

- Next step of Xenon100
- Fiducial Volume mass: 1t
- Mass of Liquid Xenon: 3t

nal
Uai

Gamma BG	10 ⁻⁴ DRU
Neutron BG	1 / (2 years)
Exposure	2 years
WIMP sensitivity (100GeV)	3 * 10 ⁻⁴⁷ cm ²
BG reduction	factor 100 -> Xe100

- Challenges
 - reduce BG
 - technical demands (like drift field)
 - find new Location
 - in Gran Sasso or other Underground Lab

- Challenges
 - reduce BG
 - -technical demands (like drift field)
 - find new Location
- Possible Location: Inside LVD Detector

My Work:

Studies of the expected gamma backgrounds

Marijke Haffke Uni Zürich XENON1t-Project

I. Introduction LVD

- Large Volume Detector
- Hall A of the Gran Sasso Laboratory
- Aim: Detecting stellar collapses, high energy neutrinos
- Dimensions: 49 m long
 13 m high
 12 m wide

I. Introduction XENON inside LVD

UNIVERSE STATE

RICENSIS

Structure

1.	Introduction
	- XENON 1t
	- LVD
II.	Gamma Measurements
	- Calibration
	- Flux
III.	Background Simulations for Xenon1t

IV. Summary and Outlook

Marijke Haffke Uni Zürich XENON1t-Project

I. Gamma Measurement NaI

NaI Detector from Saint Gobain

Marijke Haffke Uni Zürich XENON1t-Project

Calibration Measurements with Th228, Cs137, Co60, Co57 sources

• Spectra

Energy resolution of NaI

Geant4 Simulations of CalibrationTh 228

Geant4 Simulations of CalibrationTh 228

MC vs real data

I. Gamma Measurement NaI - Measurements

- Measurement of different locations in LNGS
 - Hall A
 - XenonBox
 - LVD Core Facility

I. Gamma Measure NaI - Measurem

Measurements LNGS

I. Gamma Measurement NaI - Measurements

- Measurement of different locations in LNGS
 - Hall A
 - XenonBox
 - LVD Core Facility
 - => LVD CF has ~ factor 10 lower BG

Structure

].	Introduction
	- XENON 1t
II.	Gamma Measurements
	- Calibration
	- Flux
Ш.	Background Simulations for Xenon1t
	- Hollow Sphere
	- Xenon inside LVD
IV.	Summary and Outlook

- Geant4 Geometry:
 - Outer Cryostat (made of SSteel):

130 cm diameter, 100cm height

- Inner Can (made of SSteel):

123 cm diameter, 100 cm height

– Inner Teflon Tube:

91 cm diameter, 80 cm height

– Liquid Xenon:

~3 t in total ~1 t FV

- Started Gammas from "HollowSphere" of 2m radius around Xenon1t detector
- 10⁹ events each for:
 - U238
 - Th232
 - Co60

Spatial Distribution of Events

Spatial Distribution of Events

- Energy Spectra
- Singles for a detector resolution of 3 mm in z

Energy Spectra

II. Gamma Simulations Xe1t Hollow Sphere Energy Spectra

Gamma BG single scatters 0 - 50 keV Gamma BG single scatters 0 - 50 keV Co60 & K40 single scatters, K40 counts [DRU] counts [DRU] single scatters, Co60 10* single scatters, Th-232 10 single scatters, U-238 10 10 10 15 20 25 30 35 40 45 energy [keV] energy [keV]

Uni Zürich

Marijke Haffke

XENON1t-Project

II. Gamma Simulations Xe1t **Hollow Sphere** Energy Spectra

Gamma BG single scatters 0 - 50 keV Gamma BG single scatters 0 - 50 keV Co60 & K40 single scatters, K40 counts [DRU] counts [DRU] single scatters, Co60 10 single scatters, Th-232 10 single scatters, U-238 101 subdominant 10 10 15 20 25 30 35 40 45 energy [keV] energy [keV]

Uni Zürich

Marijke Haffke

XENON1t-Project

- Energy Spectra
- Result HollowSphere Analysis:
 - we will need outer shield to reach 10⁻⁴ DRU

- Energy Spectra
- Result HollowSphere Analysis:
 - we will need outer shield to reach 10⁻⁴ DRU
- but:
- normalization of the MC is preliminary

- waiting for more precise new measurements

more precise simulations => Outlook

II. Gamma Simulations Xe1t Xenon inside LVD

LVD Geant4 Geometry of Rino Persiani

II. Gamma Simulations Xe1t Xenon inside LVD

II. Gamma Simulations Xe1t Xenon inside LVD

Structure

].	Introduction
	 XENON 1t LVD
Ш.	Gamma Measurements
	- Flux
III.	- Hollow Sphere
	- Xenon inside LVD
IV.	Summary and Outlook

IV. Summary and Outlook

- NaI-Gamma-Measurements in LNGS => LVD Core facility has very low Gamma BG (~ * 10)
- HollowSphere Simulations for Xenon1t => need additional outer shield

Outlook:

- intrinsic BG NaI => Activity of LVD CF
- Simulations of Gammas from LVD
- Simulations of BG from Xenon1t materials