Material screening and Background expectation for the Xenon100 experiment

> Alfredo Davide Ferella University of Zurich

Dark Matter at the crossroad (2008) - DESY, Hamburg 2008, 29 Sep - 2 Oct 2008

Gamma particles

Neutrons

Artificially produced radionuclides (⁸⁵Kr, ¹³⁷Cs) - Gamma

Sources:

Gamma particles

Neutrons

Artificially produced radionuclides (⁸⁵Kr, ¹³⁷Cs) - Gamma

Sources:

Cosmogenic radionuclides (⁶⁰Co) - Gamma

Gamma particles

Neutrons

NATURE:

Artificially produced radionuclides (⁸⁵Kr, ¹³⁷Cs) - Gamma

Sources:

Cosmogenic radionuclides (⁶⁰Co) - Gamma

Natural primordial radionuclides (²³⁸U, ²³²Th, ⁴⁰K) - Gamma and Neutrons

Gamma particles

Neutrons

NATURE:

Artificially produced radionuclides (⁸⁵Kr, ¹³⁷Cs) - Gamma

Sources:

Cosmogenic radionuclides (⁶⁰Co) - Gamma

Natural primordial radionuclides (²³⁸U, ²³²Th, ⁴⁰K) - Gamma and Neutrons

Cosmic muons - Neutrons

"History of the background" in Xenon10

- Xenon10 (prototype):
 - Detector operated for more than 1 year
- Some screening has been done.
- A Background estimation based on GEANT4 has been done.
- The desired sensitivity was $< 10^{-43} \text{ cm}^2$ (*a*) $\sim 100 \text{ GeV}$
- To reach such sensitivity, assuming a rejection power of 99.5%, the gamma background had to be kept at the level of ~1 DRU in the ROI (0-40 keV)

The Xenon100 Goals

Improve the sensitivity almsot 2 orders of magnitude over XENON10.

Assuming same energy threshold and same discrimination power as XENON10, the required background in the sensitive volume needs to be 100 times lower with a mass increasing of a factor 10.

In order to fulfill completely these requirements we:

*made an extensive screening campaign in order to select the right materials.
*Add a veto region around the TPM to shield the inner part
*Design the cryogenics and the electronics to be outside the shield
*The existent Xenon10 shield has been improved in order to reduce the external BG
*We used a distillation column to reduce the 85Kr contained in the commercial Xe

High Purity Germanium Detector for gamma spectroscopy HPGe detector produced by Canberra √2.2 kg HPGe crystal

* coaxial crystal: 82 mm diameter, 81.5 mm height.

VUltra Low Background Cu housing

Physical Characteristics

Source (isotope)	⁵⁷ Co	⁶⁰ Co
Energy (keV)	122	1332
FWHM (keV)	1.09	2.06
FWTM (keV)		4.04
Peak/Compton		76.0:1
Rel. Efficiency		100.5 %

GATOR

High Purity Germanium Detector for

The Xenon100 Material screening

Stainless Steel

Material	238U [mBq/kg]	232Th [mBq/kg]	60Co [mBq/kg]	40K [mBq/kg]
25 mm SS Nironit (flange)	< 1.3	2.9 ± 0.7	1.4 ± 0.3	< 7.1
2.5 mm SS Nironit (bottom cryo)	< 2.7	< 1.5	13 ± 1	< 12
3 mm SS Nironit (ring for the grid)	3.6 ± 0.8	1.8 ± 0.5	7 ± 1	< 4.92
1.5 mm SS Nironit (cryostat)	<0.13	< 1.0	8.5 ± 0.9	10.5 ± 4.2

Inner detector materials

PMT Bases (Cirlex)	65 ± 8	31 ± 10	< 3.6	< 66
PTFE from APT (planned)	< 0.16	< 0.13	< 0.11	2.9 ± 1.1
PTFE from Zurich (in use)	< 0.31	< 0.16	< 0.11	< 2.25
Copper (TPC inner structure)	< 0.22	< 0.21	0.21 ± 0.07	< 1.34
Field shaping resistors [uBq/pc]	590 ± 180	14 ± 3	< 3	190 ± 30
Small Screws (SS)	< 9.2	16 ± 4	9 ± 3	< 46.4

Special thanks to Matthias Laubenstein (LNGS screening facility)

The Xenon100 Material screening

Shield (to be measured again)

Sample	²³⁸ U (mBq/kg)	²³² Th (mBq/kg)	⁶⁰ Co (mBq/kg)	⁴⁰ K (mBq/kg)
Outermost Lead (shield)	< 5.7	< 1.6	< 1.1	14 ± 6
Innermost Lead (shield)	< 6.8	< 3.9	<0.19	< 28
Inner Poly from Shield	< 3.54	< 2.69	< 0.77	< 5.88
Outer Poly from Shield	< 5.76	<6.54	< 12.7	< 1.70

PMTs

	238U [mBq/PMT]	232Th [mBq/PMT]	60Co [mBq/PMT]	40K [mBq/PMT]
39 PMTs	0.12 ± 0.01	0.11 ± 0.01	1.5 ± 0.1	6.9 ± 0.7
48 PMTs	0.11 ± 0.01	0.12 ± 0.01	0.56 +/- 0.04	7.7 +/- 0.8
22 HQE PMTs	< 0.64	0.18 ± 0.06	0.6 ± 0.1	12 ± 2
23 HQE PMTs	0.16 ± 0.05	0.46 ± 0.16	0.73 ± 0.07	14 ± 2
12 HQE PMTs	< 0.23	0.13 ± 0.05	0.7 ± 0.1	13 ± 2
15 PMTs	0.20 ± 0.03	0.20 ± 0.03	2.8 ± 0.2	11 ± 1
4 HQE PMTs	< 0.15	0.14 ± 0.07	0.57 ± 0.09	5.8 ± 1.5
7 HQE PMTs	0.23 ± 0.12	< 0.25	0.7 ± 0.2	12.7 ± 2.5
11 PMTs	0.30 ± 0.19	0.21 ± 0.13	0.76 ± 0.19	12.1 ± 2.5

The Xenon100 Background expectation

GEANT4 Simulation includes:

Inside detector geometryOuter shield

Simulated gamma and neutron background from all the materials

Gammas

Material	Rate of single scatters [mDRU] in the ROI [0,30] keV _{ee}
Stainless Steel	2.01 ± 0.22
Teflon	0.18 ± 0.02
PMTs	4.91 ± 0.60
Polyethylene	3.09 ± 0.29
Copper shield	0.026 ± 0.002
Xenon*	1.03 ± 0.02
Total	11.25 ± 0.70

The Xenon100 Background expectation

Neutrons Detector and shield

Material	Rate of single scatters [µDRU] in the ROI [0,26.5] keVr
Stainless Steel	0.293 ± 0.003
Teflon	0.584 ± 0.003
PMTs	0.318 ± 0.002
Polyethylene	0.49 ± 0.01
Copper shield	0.110 ± 0.002
Lead	0.38 ± 0.02
Xenon	0.07 ± 0.001
Total	1.74 ± 0.01

The Xenon100 Background expectation Neutrons Detector and shield Material Rate of single scatters [µDRU]

010			18.10	1. 3		606					
N	eutron	Spec	trum	from	U in S	S					
	×10 ⁻	12									
m^3]	. Er	\sim						-	– U tota	I	
[n/s c	eo - 1	٦						-	- U spo	nt. fissio	n
Rate	50	_	ί.					-	U (a,n)	
ction	40	N,	ì								
Produ	30		ι λ								
E E	4		ેપ	L							
Ę	20 🕂 🥤	~~	, ï	<u>1</u>							
ž	1		ι.	Υų.							
-	10		٦.	~2	L.						
	1		٦.		Sec.						
	a Euro	du			-		THE				
	°0	1	2	3	4	5	6	7	8 Enei	9 rgy [Me	10 ₀V]
1 .	3013	41.5	33.97	1995	1 1 1	51.94		1354	STAL!		3.8.

Material	in the ROI [0,26.5] keVr
Stainless Steel	0.293 ± 0.003
Teflon	0.584 ± 0.003
PMTs	0.318 ± 0.002
Polyethylene	0.49 ± 0.01
Copper shield	0.110 ± 0.002
Lead	0.38 ± 0.02
Xenon	0.07 ± 0.001
Total	1.74 ± 0.01

0.6 single scatter events / year

The Xenon100 Background expectation

Neutrons Detector and shield

Material	in the ROI [0,26.5] keV _r
Stainless Steel	0.293 ± 0.003
Teflon	0.584 ± 0.003
PMTs	0.318 ± 0.002
Polyethylene	0.49 ± 0.01
Copper shield	0.110 ± 0.002
Lead	0.38 ± 0.02
Xenon	0.07 ± 0.001
Total	1.74 ± 0.01

Rock and concrete

0.6 single scatter events / year

Neutron Spectrum from U in concrete

The Xenon100 Background expectation **Neutrons** Detector and shield

Material	in the ROI [0,26.5] keV _r
Stainless Steel	0.293 ± 0.003
Teflon	0.584 ± 0.003
PMTs	0.318 ± 0.002
Polyethylene	0.49 ± 0.01
Copper shield	0.110 ± 0.002
Lead	0.38 ± 0.02
Xenon	0.07 ± 0.001
Total	1.74 ± 0.01

Rock and concrete

0.6 single scatter events / year

Neutron Spectrum from U in concrete

 5.0 ± 1.0 Single recoils per 63 kg/y are expected 2.9 ± 0.9 in 46 kg/y fiducial

The Xenon100 Background expectation **Neutrons** Detector and shield Rate of single scatters [UDRU]

Material	in the ROI [0,26.5] keVr
Stainless Steel	0.293 ± 0.003
Teflon	0.584 ± 0.003
PMTs	0.318 ± 0.002
Polyethylene	0.49 ± 0.01
Copper shield	0.110 ± 0.002
Lead	0.38 ± 0.02
Xenon	0.07 ± 0.001
Total	1.74 ± 0.01

Rock and concrete

0.6 single scatter events / year

Neutron Spectrum from U in concrete

 5.0 ± 1.0 Single recoils per 63 kg/y are expected 2.9 ± 0.9 in 46 kg/y fiducial

Additional 20 cm of water shield outside the lead are being used

The Xenon10 Delayed Coincidence analysis

²¹⁴Bi from ²²⁶Rn (²³⁸U)

The Xenon10-100 Delayed Coincidence analysis

Xenon10

 $[^{212}\text{Bi}] = 44.2 \pm 5.4 \ \mu\text{Bq/kg}$ $[^{232}\text{Th}] = (11 \pm 1) \ge 10-12 \ \text{g Th g}^{-1}$

 $[^{214}Bi] = 25 \pm 4 \,\mu Bq/kg$ $[^{238}U] = (2.0 \pm 0.3) \ge 10^{-12} g U g^{-1}$

 $[85Kr] = 0.35 \pm 0.04 \text{ mBq/kg}$ $[^{85}Kr] = 3.4 \pm 0.6 \text{ ppb}$

Taking into account the efficiency of all the cuts applied in the analysis, it's possible to estimate the content of 85Kr, 212Bi and 214Bi and thus of 232Th and 238U (if sec. equilibrium):

Time Difference between S1 peaks (µs)

 $[^{212}Bi] = 1.8 \pm 0.5 \ \mu Bq/kg$ $[^{232}Th] = (0.4 \pm 0.1) \times 10\text{-}12 \text{ g Th g}^{-1}$ $[^{214}Bi] = 53 \pm 3 \ \mu Bq/kg$ $[^{238}U] = (4.3 \pm 0.2) \times 10^{-12} \text{ g U g}^{-1}$ $[85Kr] = 0.31 \pm 0.6 \ m Bq/kg$ $[^{85}Kr] = 4.0 \pm 0.9 \text{ ppb}$

The Xenon100 purification from ⁸⁵Kr

All the xenon has been processed through the column (finished on monday night). Wait for 3 weeks of data taking in order to verify the purification efficiency of the column (ppt level) with the delayed coincidence analysis.

Conclusions

The Xenon100 detector is fully operating underground ready to take Dark Matter data

The background of the experiment is very similar to the expectation

The Xenon has been purified from the Kr.

By November 2008 we plan to start the Dark Matter search run

Thank you

XENON10 Discrimination

• Rejection is > 99.6% for 50% Nuclear Recoil acceptance

- ⇒ Cuts: fiducial volume (remove events at teflon edge where poor charge collection)
- ➡ Multiple scatters (more than one S2 pulse)