Neutrino Physics	GERDA	Calibration	Outlook

The Calibration System for the GERDA Experiment

Francis Froborg

University of Zurich

PhD Seminar 2009, ETH Zurich 05 June 2009

Neutrino Physics	GERDA 0000	Calibration	Outlook
Outline			

2 GERDA

3 Calibration

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	000000	00
Status			

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	0000000	00

Double Beta Decay

$0\nu\beta\beta$

•
$$(Z, A) \to (Z + 2, A) + 2e^{-}$$

• $\Delta L = 2$
• $\left| T_{1/2}^{0\nu} \right|^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta}^2 \rangle \sim 10^{-25}/y$

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	0000000	00
Signature			

Measuring the energy of both electrons

- $2\nu\beta\beta$: Continuous energy spectrum
- $0\nu\beta\beta$: Sharp peak at Q value of decay

$$Q = E_{e1} + E_{e2} - 2m_e$$

- Background reduction essential because of small half lives
- Schechter & Valle (1982): Measuring $0\nu\beta\beta \Rightarrow \nu$ Majorana particle

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	000000	00
Heidelberg-Moscow	Experiment		

- 5 HPGe crystals with 71.7 kg y
- Peak at Q value:

$$T^{0
u}_{1/2} = 1.2 imes 10^{25} y$$
 (4 σ)
 $\langle m_{etaeta}
angle = 0.44 \, {
m eV}$

- Problem: Confidence depends on background model and energy region selected for analysis
 - \Rightarrow New experiments with higher sensitivity needed

H.V.Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198

Neutrino Physics	GERDA	Calibration	Outlook
	0000		
The GERmanium	Detector Array (G	FRDA)	

J

Naked high purity ⁷⁶Ge crystals placed in LAr

Phase I

- 8 Hd-Mo & IGEX crystals (15 kg y)
- Background goal: $10^{-2} \text{ cts/kg/keV/y}$

 \Rightarrow $T_{1/2}^{0
u}$ > 2.0 × 10²⁵ y $\langle m_{etaeta}
angle < 0.33 \, \mathrm{eV}$

Phase II

• Phase I + 14 new crystals (100 kg y) • Background goal: $10^{-3} \text{ cts/kg/keV/y}$ $\Rightarrow T_{1/2}^{0\nu} > 14 \times 10^{25} \text{ y}$ $\langle m_{\beta\beta} \rangle < 0.13 \text{ eV}$

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	000000	00
The Cellebourtien			

The Collaboration

ITALY INFN LNGS, Assergi Univ. di Milano Biocca e INFN Univ, di Padova e INFN

RUSSIA

INR, Moscow ITEP Physics, Moscow Kurchatov Institute, Moscow JINR Dubna

GERMANY MPI Heidelberg MPI München TU Dresden Universität Tübingen

POLAND Jagiellonian University, Cracow

BELGIUM IRMM, Geel SWITZERLAND University of Zurich

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	000000	00

Overview

Francis Froborg

Calibration of GERDA

Neutrino Physics	GERDA ○○○●	Calibration 0000000	Outlook 00
Status of the	Experiment		

Francis Froborg

Calibration of GERDA

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	000000	00
The Calibratio	n System		

Boundary Conditions

- Fixed positions of the sources
- Maximum radius \sim 4cm
- Minimum weight $\sim 3 \rm kg$
- Parking position in the lock of the detector

Goals

- Type and strength of calibration sources
- Absorber material and geometry
- Efficiency of energy deposition in each detector
- Efficiency of pulse shape analysis

Neutrino Physics	GERDA 0000	Calibration	Outlook
Type of Source			

Tests Monte Carlos of ⁵⁶Co, ²³⁸U, ¹⁵²Eu, ²²⁸Th

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	000000	00
7 Position			

- Position non-trivial due to different detector sizes
 - \Rightarrow MCS with different z positions
- Analysis of statistics in
 - $\bullet~\mbox{single}~\mbox{escape}~\mbox{peak}~\rightarrow~\mbox{close}~\mbox{to}~\mbox{Q-value}$
 - $\bullet \ \ \text{double escape peak} \to \mathsf{PSA}$
 - for each single detector
- Optimization of overall statistics as well as events in detector(s) with worst statistics

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	000000	00
z Position			

- Position non-trivial due to different detector sizes
 - \Rightarrow MCS with different z positions
- Analysis of statistics in
 - $\bullet~\mbox{single}~\mbox{escape}~\mbox{peak}~\rightarrow~\mbox{close}~\mbox{to}~\mbox{Q-value}$
 - $\bullet \ \ \text{double escape peak} \to \mathsf{PSA}$

for each single detector

 Optimization of overall statistics as well as events in detector(s) with worst statistics

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	0000000	00

Minimum Source Strength

	$15 imes10^7$	$12 imes 10^7$	$9 imes 10^7$	$6 imes 10^7$	$3 imes 10^7$
# Events	2721	2160	1637	1073	547
SEP	4.4	4.5	4.4	4.5	4.5
DEP	2.0	2.0	1.9	2.0	2.1
DEP 2σ	2.9	2.9	2.8	2.8	3.0

$9\times 10^7~\text{decays}$ sufficient

 \Rightarrow 3 Sources with A = 20kBq and runtime of 25 min per layer

Neutrino Physics	GERDA 0000	Calibration	Outlook
Mockup			

Absorber

- Requirements: High density, high radio purity, machinable
- Screenig of W, Densimet, Ta
- Ta lowest radioactivity, no α -n reactions in material

Mockup

- 20 thermal cycles with LN
- 2 slow immersion tests
- \Rightarrow No problems so far!

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	0000000	00
γ Background			

- Linear attenuation: $\phi = \phi_0 e^{-d/l}$
- LAr: *d* = 280cm, *l* = 20.69cm
- Tantalum: d = 6cm, l = 1.48cm

Monte Carlo Simulation

- Get spectrum in region of interest
- Naked source
- Activity scaled according linear attenuation

Background for 3 sources with A = 20kBq in region of interest

 $B({\rm cts/kg/keV/y}) = 1.1 \pm 0.6({\rm stat.}) \, 10^{-4} \, {\rm cts}$

Neutrino Physics	GERDA 0000	Calibration ○○○○○●	Outlook
Commissioning	; Lock		

- New geometry
 - Just one source
 - Larger distances between source and detectors

Final	$12 imes 10^7$	$9 imes 10^7$	$6 imes 10^7$	$3 imes 10^7$	$3 imes 10^7$	CLock
# Events	2160	1637	1073	547	118	# Events
SEP	4.5	4.4	4.5	4.5	3.8	SEP

First Results

Significantly lower statistics in detectors (Factor \sim 4.5) \Rightarrow Stronger source and/or longer run needed

Neutrino Physics	GERDA 0000	Calibration	Outlook ●○
Outlook			

Delay due to earthquake on April 6 in L'Aquila

	Phase I	Phase II
June 2009	Clean room and lock	Tests for crystal pulling
		(IKZ, Berlin)
November 2009	Start taking data	Natural Ge test detectors
June 2010	Final lock	
February		Crystal growing of enriched Ge
June 2010		⁷⁶ Ge detectors (Canberra)
November 2010		Start taking data

Neutrino Physics	GERDA	Calibration	Outlook
0000	0000	0000000	0•
Summary			

GERDA

- Potential to answer all 3 important questions in ν physics
- Start taking data \sim Nov 2009

Status of Calibration System

- Phase I: Three ²²⁸Th sources with A = 20kBq
- γ background $B(\text{cts/kg/keV/y}) = 1.1 \pm 0.6(\text{stat.}) \, 10^{-4} \, \text{cts}$
- Further investigations for pulse shape calibration needed
- Further investigations for comm lock needed
- Mockup tests successful so far