Neutrinoless Double Beta Decay Francis Froborg University of Zurich The New, the Rare and the Beautiful 07. January 2010 # Overview - Neutrino Physics & Double Beta Decay - 2 Principle of Experiments - 3 Status of Double Beta Decay Measurements - Present & Future - Summary ν & DBD # We know - Neutrinos have a mass - Mass difference between eigenstates ### The 3 big questions - Absolute mass scale - Mass hierarchy - Majorana vs. Dirac ### $2\nu\beta\beta$ • $$(Z, A) \rightarrow (Z + 2, A) + 2e^{-} + 2\bar{\nu}_{e}$$ $$\Delta L = 0$$ $$ullet \left|T_{1/2}^{2 u} ight|^{-1} = G^{2 u}(Q_{etaeta},Z)\,|M_{2 u}|^2 \sim \left|10^{20}\,\,\mathrm{y} ight|^{-1}$$ ### $0\nu\beta\beta$ • $$(Z,A) \to (Z+2,A) + 2e^{-}$$ $$\Delta L = 2$$ • $$\left|T_{1/2}^{0\nu}\right|^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta}^2 \rangle \sim \left|10^{25} \text{ y}\right|^{-1}$$ • $$\langle m_{\beta\beta} \rangle = \left| \sum_{i} U_{ei}^{2} m_{i} \right|$$ ν & DBD # Nuclear Matrix Elements Three different methods for calculation: Nuclear Shell Model (SM) Uses Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels Quasi-Particle Random Phase Approximation (QRPA) Uses 3 parameters accounting for pairing, particle-particle and particle-hole interactions. Interacting Boson Model (IBM) Bosons can interact through 1- and 2-body interactions giving rise to bosonic wave functions. - QRPA and IBM (coincidentally?) in agreement - SM a factor of 2 lower # We measure $$T_{1/2}^{0 u} \propto \langle m_{etaeta} angle^{-2} \propto const \ \sqrt{ rac{M imes t}{\Delta E imes B}}$$ ## To get the best possible measurements we need - High mass M and/or long time t (exposure) - Excellent energy resolution ΔE - Minimal background B # What would it look like? Signature ### Measuring the energy of both electrons - $2\nu\beta\beta$: Continuous energy spectrum - $0\nu\beta\beta$: Sharp peak at Q value of decay $$Q = E_{\text{mother}} - E_{\text{daugther}} - 2m_e$$ • Schechter & Valle (1982): Measuring $0\nu\beta\beta\Rightarrow\nu$ Majorana particle Summary ### Source = Detector - High masses possible - © High efficiency for the detection of both electrons - © Good energy resolution - No angular correlation of electrons measurable # Source ≠ Detector - © Topology of events can be used for background suppression - © Angular correlation and energy of single electrons measurable - Many isotopes as possible sources - © Small masses - © Low efficiency - © Worse energy resolution - 5 HPGe crystals with 71.7 kg y - Peak at Q value: $$T_{1/2}^{0\nu} = 1.2 \times 10^{25} y$$ (4 σ) $\langle m_{\beta\beta} \rangle = 0.44 \,\mathrm{eV}$ - Problem: Confidence depends on background model and energy region selected for analysis - ⇒ New experiments with higher sensitivity needed | Isotope | Q-Value [keV] | Half-life [y] | $\langle m_{ u} angle$ [eV] | |-------------------|---------------|------------------------|-----------------------------| | ⁴⁸ Ca | 4271 | $> 9.5 \times 10^{21}$ | < 8.3 | | ⁷⁶ Ge | 2039 | $> 1.9 \times 10^{25}$ | < 0.35 | | ⁸² Se | 2995 | $> 3.6 \times 10^{23}$ | < 0.9 - 1.61 | | ¹⁰⁰ Mo | 3034 | $>1.1 imes10^{24}$ | < 0.45 - 0.9 | | ^{116}Cd | 2805 | $> 7.0 \times 10^{22}$ | < 2.6 | | ¹³⁰ Te | 2528 | $> 3.0 \times 10^{24}$ | < 0.2 - 0.7 | | ¹³⁶ Xe | 2476 | $> 4.4 \times 10^{23}$ | < 1.8 - 5.2 | | ¹⁵⁰ Nd | 3367 | $> 1.2 \times 10^{21}$ | < 3.0 | # Experiments Past, Present and Future | Name | Isotope | Mass | Method | Location | Time Line | | | |--|---------------------------------------|-------------|---------------|----------|-------------------|--|--| | Operational & Recently completed experiments | | | | | | | | | CUORICINO | ¹³⁰ Te | 12 kg | bolometric | LNGS | 2003-2008 | | | | NEMO-3 | ¹⁰⁰ Mo/ ⁸² Se | 6.9/0.9 kg | tracko-calo | LSM | until 2010 | | | | Construction funding | | | | | | | | | CUORE | ¹³⁰ Te | 200 kg | bolometric | LNGS | 2012 | | | | EXO-200 | ¹³⁶ Xe | 160 kg | liquid TPC | WIPP | 2009 (comiss.) | | | | GERDA I&II | ⁷⁶ Ge | 35kg | ionization | LNGS | 2009 (comiss.) | | | | SNO+ | ¹⁵⁰ Nd | 56 kg | scintillation | SNOlab | 2011 | | | | Substantial R&D funding / prototyping | | | | | | | | | CANDLES | ⁴⁸ Ca | 0.35 kg | scintillation | Kamioka | 2009 | | | | Majorana | ⁷⁶ Ge | 26 kg | ionization | SUSL | 2012 | | | | NEXT | ¹³⁶ Xe | 80 kg | gas TPC | Canfranc | 2013 | | | | SuperNEMO | ⁸² Se or ¹⁵⁰ Nd | 100 kg | tracko-calo | LSM | 2012 (first mod.) | | | | | | | | | | | | ### Location LNGS Isotope 40.7 kg of TeO₂ Bolometer Cystals cooled down to ~8 mK to measure temperature increase proportional to energy deposition of the event Energy resolution FWHM ∼8-10 keV Status Data from 2003-2008 # **CUORICINO** ν & DBD Results Exposure 11.83 kg y of 130 Te Background level 0.18 ± 0.02 cts/(keV kg y) Half-life $T_{1/2} > 2.94 \times 10^{24}$ y Majorana mass $m_{\rm ee} < 0.19 - 0.68$ eV Follow-up experiment CUORE with 200 kg of 130 Te Arnaboldi et al. 2008 Summary Location Frejus Underground Laboratory Isotope 10 kg of different isotopes, mainly ¹⁰⁰Mo Tracking Drift wire chamber operating in Geiger mode (6180 cells) Calorimeter 1940 plastic scintillators coupled to low radioactivity PMTs Energy resolution 8% FWHM @ 3 MeV Status Data collection started 2003 # NEMO-3 Results until end of 2008 # Exposure 26.6 kg y Half-life $T_{1/2}>1.1\times10^{24}$ y Majorana mass $m_{\rm ee}<0.45-0.93$ eV $$^{82}\text{Se}$$ Exposure 3.6 kg y Half-life $T_{1/2}>3.6\times10^{23}$ y Majorana mass $m_{ee}<0.89-1.61$ eV Follow-up experiment SuperNEMO with 100 kg of $^{82}\mathrm{Se}$ or $^{150}\mathrm{Nd}$ # The GERmanium Detector Array (GERDA) Overview Location LNGS Isotope 17.8 kg (Phase I) and \sim 40 kg (Phase II) of 76 Ge Ionization Naked high purity semiconductor diodes placed in liquid argon Status Commissioning # GERDA Goals & Status #### Phase I goals Exposure 15 kg y Background 10⁻² cts/(keV kg y) Half-life $T_{1/2} > 2.2 \times 10^{25}$ Majorana mass $m_{ee} < 0.27 \text{ eV}$ ### Phase II goals Exposure 100 kg y Background 10^{-3} cts/(keV kg y) Half-life $T_{1/2} > 15 \times 10^{25}$ Majorana mass $m_{ee} < 0.11 \text{ eV}$ #### Status - Most parts installed - Liquid argon filled - Operating first detector in a couple of weeks Summary # Summary ν & DBD - Observing $0\nu\beta\beta$ would answer the questions about the absolute mass scale, the hierarchy and the nature of neutrinos - $2\nu\beta\beta$ measured in more than 10 isotopes - Experiments uses different isotopes and techniques - So far just upper limits on $m_{\rm ee}$ and a claim but no evidence for $0\nu\beta\beta$ - Promising experiments start data taking this year!