Neutrinoless Double Beta Decay

Francis Froborg

University of Zurich

The New, the Rare and the Beautiful 07. January 2010

Overview

- Neutrino Physics & Double Beta Decay
- 2 Principle of Experiments
- 3 Status of Double Beta Decay Measurements
- Present & Future
- Summary

ν & DBD

We know

- Neutrinos have a mass
- Mass difference between eigenstates

The 3 big questions

- Absolute mass scale
- Mass hierarchy
- Majorana vs. Dirac

$2\nu\beta\beta$

•
$$(Z, A) \rightarrow (Z + 2, A) + 2e^{-} + 2\bar{\nu}_{e}$$

$$\Delta L = 0$$

$$ullet \left|T_{1/2}^{2
u}
ight|^{-1} = G^{2
u}(Q_{etaeta},Z)\,|M_{2
u}|^2 \sim \left|10^{20}\,\,\mathrm{y}
ight|^{-1}$$

$0\nu\beta\beta$

•
$$(Z,A) \to (Z+2,A) + 2e^{-}$$

$$\Delta L = 2$$

•
$$\left|T_{1/2}^{0\nu}\right|^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta}^2 \rangle \sim \left|10^{25} \text{ y}\right|^{-1}$$

•
$$\langle m_{\beta\beta} \rangle = \left| \sum_{i} U_{ei}^{2} m_{i} \right|$$

ν & DBD

Nuclear Matrix Elements

Three different methods for calculation:

Nuclear Shell Model (SM) Uses Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels

Quasi-Particle Random Phase Approximation (QRPA) Uses 3 parameters accounting for pairing, particle-particle and particle-hole interactions.

Interacting Boson Model (IBM) Bosons can interact through 1- and 2-body interactions giving rise to bosonic wave functions.

- QRPA and IBM (coincidentally?) in agreement
- SM a factor of 2 lower

We measure

$$T_{1/2}^{0
u} \propto \langle m_{etaeta}
angle^{-2} \propto const \ \sqrt{rac{M imes t}{\Delta E imes B}}$$

To get the best possible measurements we need

- High mass M and/or long time t (exposure)
- Excellent energy resolution ΔE
- Minimal background B

What would it look like?

Signature

Measuring the energy of both electrons

- $2\nu\beta\beta$: Continuous energy spectrum
- $0\nu\beta\beta$: Sharp peak at Q value of decay

$$Q = E_{\text{mother}} - E_{\text{daugther}} - 2m_e$$

• Schechter & Valle (1982): Measuring $0\nu\beta\beta\Rightarrow\nu$ Majorana particle

Summary

Source = Detector

- High masses possible
- © High efficiency for the detection of both electrons
- © Good energy resolution
- No angular correlation of electrons measurable

Source ≠ Detector

- © Topology of events can be used for background suppression
- © Angular correlation and energy of single electrons measurable
- Many isotopes as possible sources
- © Small masses
- © Low efficiency
- © Worse energy resolution

- 5 HPGe crystals with 71.7 kg y
- Peak at Q value:

$$T_{1/2}^{0\nu} = 1.2 \times 10^{25} y$$
 (4 σ)
 $\langle m_{\beta\beta} \rangle = 0.44 \,\mathrm{eV}$

- Problem: Confidence depends on background model and energy region selected for analysis
 - ⇒ New experiments with higher sensitivity needed

Isotope	Q-Value [keV]	Half-life [y]	$\langle m_{ u} angle$ [eV]
⁴⁸ Ca	4271	$> 9.5 \times 10^{21}$	< 8.3
⁷⁶ Ge	2039	$> 1.9 \times 10^{25}$	< 0.35
⁸² Se	2995	$> 3.6 \times 10^{23}$	< 0.9 - 1.61
¹⁰⁰ Mo	3034	$>1.1 imes10^{24}$	< 0.45 - 0.9
^{116}Cd	2805	$> 7.0 \times 10^{22}$	< 2.6
¹³⁰ Te	2528	$> 3.0 \times 10^{24}$	< 0.2 - 0.7
¹³⁶ Xe	2476	$> 4.4 \times 10^{23}$	< 1.8 - 5.2
¹⁵⁰ Nd	3367	$> 1.2 \times 10^{21}$	< 3.0

Experiments Past, Present and Future

Name	Isotope	Mass	Method	Location	Time Line		
Operational & Recently completed experiments							
CUORICINO	¹³⁰ Te	12 kg	bolometric	LNGS	2003-2008		
NEMO-3	¹⁰⁰ Mo/ ⁸² Se	6.9/0.9 kg	tracko-calo	LSM	until 2010		
Construction funding							
CUORE	¹³⁰ Te	200 kg	bolometric	LNGS	2012		
EXO-200	¹³⁶ Xe	160 kg	liquid TPC	WIPP	2009 (comiss.)		
GERDA I&II	⁷⁶ Ge	35kg	ionization	LNGS	2009 (comiss.)		
SNO+	¹⁵⁰ Nd	56 kg	scintillation	SNOlab	2011		
Substantial R&D funding / prototyping							
CANDLES	⁴⁸ Ca	0.35 kg	scintillation	Kamioka	2009		
Majorana	⁷⁶ Ge	26 kg	ionization	SUSL	2012		
NEXT	¹³⁶ Xe	80 kg	gas TPC	Canfranc	2013		
SuperNEMO	⁸² Se or ¹⁵⁰ Nd	100 kg	tracko-calo	LSM	2012 (first mod.)		

Location LNGS

Isotope 40.7 kg of TeO₂

Bolometer Cystals cooled down to ~8 mK to measure temperature increase proportional to energy deposition of the event

Energy resolution FWHM ∼8-10 keV

Status Data from 2003-2008

CUORICINO

ν & DBD

Results

Exposure 11.83 kg y of 130 Te
Background level 0.18 ± 0.02 cts/(keV kg y)
Half-life $T_{1/2} > 2.94 \times 10^{24}$ y
Majorana mass $m_{\rm ee} < 0.19 - 0.68$ eV
Follow-up experiment CUORE with 200 kg of 130 Te

Arnaboldi et al. 2008

Summary

Location Frejus Underground Laboratory

Isotope 10 kg of different isotopes, mainly ¹⁰⁰Mo

Tracking Drift wire chamber operating in Geiger mode (6180 cells)

Calorimeter 1940 plastic scintillators coupled to low radioactivity PMTs

Energy resolution 8% FWHM @ 3 MeV

Status Data collection started 2003

NEMO-3 Results until end of 2008

Exposure 26.6 kg y Half-life $T_{1/2}>1.1\times10^{24}$ y Majorana mass $m_{\rm ee}<0.45-0.93$ eV

$$^{82}\text{Se}$$
 Exposure 3.6 kg y
Half-life $T_{1/2}>3.6\times10^{23}$ y
Majorana mass $m_{ee}<0.89-1.61$ eV

Follow-up experiment SuperNEMO with 100 kg of $^{82}\mathrm{Se}$ or $^{150}\mathrm{Nd}$

The GERmanium Detector Array (GERDA)

Overview

Location LNGS

Isotope 17.8 kg (Phase I) and

 \sim 40 kg (Phase II) of 76 Ge

Ionization Naked high purity

semiconductor diodes placed

in liquid argon

Status Commissioning

GERDA Goals & Status

Phase I goals

Exposure 15 kg y

Background 10⁻² cts/(keV kg y)

Half-life $T_{1/2} > 2.2 \times 10^{25}$

Majorana mass $m_{ee} < 0.27 \text{ eV}$

Phase II goals

Exposure 100 kg y

Background 10^{-3} cts/(keV kg y)

Half-life $T_{1/2} > 15 \times 10^{25}$

Majorana mass $m_{ee} < 0.11 \text{ eV}$

Status

- Most parts installed
- Liquid argon filled
- Operating first detector in a couple of weeks

Summary

Summary

ν & DBD

- Observing $0\nu\beta\beta$ would answer the questions about the absolute mass scale, the hierarchy and the nature of neutrinos
- $2\nu\beta\beta$ measured in more than 10 isotopes
- Experiments uses different isotopes and techniques
- So far just upper limits on $m_{\rm ee}$ and a claim but no evidence for $0\nu\beta\beta$
- Promising experiments start data taking this year!