Search for Dark Matter with the CDMS experiment

Sebastian Arrenberg University of Zürich for the CDMS Collaboration Joint Annual Meeting of ÖPG/SPS/ÖGAA Innsbruck, Sep. 4th, 2009

The CDMS Setup & Shielding

- 5 towers with 6 detectors each
- active veto against high energetic muons
- passive shielding:
 - lead against gammas from radioactive impurities
 - polyethylene to moderate neutrons from fission decays and from (α,n) interactions resulting from U/Th decays

The CDMS ZIP Detectors

- 19 Ge and 11 Si semiconductor detectors
- operated at cryogenic temperatures (~40 mK)
- 2 signals from interaction (ionization and phonon) event by event discrimination between electron recoils and nuclear recoils
- z-sensitive readout
- xy-position imaging

The Ionization Readout

- drift field of 3 V/cm (4V/cm) on Ge (Si) detectors
- interaction at crystal edges can have incomplete charge collection

use outer electrode as guard ring omit qouter events

- low-energy resolution: 3-4%

The Phonon Readout

- segmented phonon readout (4 quadrants)
- each quadrant consists of 1036 tungsten TES (Transition Edge Sensors)
- fast response time ~5 µs
- low energy resolution: ~5%
- tungsten strips set just below the edge of superconductivity using bias voltage

energy deposition raises temperature

conductivity changes to normal

dramatic lowering of current read out with SQUIDS quasiparticle

Primary background rejection

- most backgrounds (e, \mathcal{Y}) produce electron recoils
- neutrons and WIMPs produce nuclear recoils which have a suppressed ionization signal
- define ionization yield as

- better than 1:10000 rejection of electron recoils based on ionization yield alone
- dominant remaining background: Low yield surface events

Surface events and contamination

- reduced charge yield due to backdiffusion of charge carriers at the detector surface
- surface event background can be fully accounted for by two sources:
 - 1. low-energy electrons induced by the ambient photon flux from radioactive impurities in the experimental setup
 - 2. ²¹⁰Pb contamination of the detector surfaces

²¹⁰Pb contamination?

- detetctors are exposed to environmental Radon during fabrication, testing, ...
- ²¹⁰Pb is a decay product of ²²²Rn and can be deposited on the detector surfaces
- decay chain:

 significant reduction of this contribution for new towers (T3-T5)

Evidence for ²¹⁰Pb contamination

Phonon Timing

Surface events are faster in timing than bulk nuclear recoils.

Use timing as discriminator to get rid of surface events.

Surface event rejection

- use risetime+delaytime to define timing cut on calibration data
- allow ~0.5 events total laekage within WIMP search data

- apply cut to lowbackground data
- surface event rejection ~200:1

Analysis Technique

Cut criteria for WIMP candidates:

- energy range: 10-100 keV

- veto-anticoincidence

- data quality

Blind Analysis

Set all cuts and calculate efficiencies **before** looking at the signal region of the WIMP-search data.

Analysis Summary

- 398 kg-days raw exposure
- no events observed in signal region after applying timing cut

Background summaryexpected number of surface leakage events:

 $0.6_{-0.3}^{+0.5}$ (stat.) $_{-0.2}^{+0.3}$ (syst.)

Results

Spin-independent cross section limits

4.6x10⁻⁴⁴ cm² @ 60 GeV

(combined with previous CDMS data)

Spin-dependent cross section limits

(combined with previous CDMS data)

World leading 90% C.L. upper limit on scalar interaction cross sections for WIMP masses above 44 GeV!

Ongoing analysis...

- exposure of ~700 kg-days after basic quality cuts in analysis pipeline
- timing of new data looks promising in obtaining higher detection efficiency
- new results expected in ~1 month

SuperCDMS

- 2.5 times more massive Ge detectors (1-inch thick)
- reduced surface/volume ratio to decrease background
- "endcap" Ge veto detectors in each tower
- improved AI fin layout for better phonon collection
- modified phonon sensor layout with outter phonon guard ring similar to outter charge electrode
- first SuperTower already installed in Soudan

Summary

- Currently CDMS sets the world leading exclusion limit on scalar WIMP-nucleon cross sections above 44 GeV.
- Last CDMS data had zero background.
- New data-taking was finished on March 18th this year. New results are expected in about a month.
- First SuperCDMS Tower has been built and installed in the Soudan mine. Initial tests are ongoing.

Backup slides

²¹⁰PB decay scheme

Signature of ²¹⁰Pb decay: ~46.5 keV peak of NND events