

Future detectors for low energy neutrino astronomy: LAGUNA, LENA and Hano-hano

Teresa Marrodán Undagoitia

marrodan@physik.uzh.ch

Physik Institut Universität Zürich

Reims 21.10.09

Neutrino Champagne 2009

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary
Outline				
1 LAC	GUNA physic	s and detector c	oncepts	
	NA physics ar	nd design		

- Hano-hano project
- Organic scintillators

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary
Outline				
1 LA	GUNA physic	s and detector c	oncepts	
2 LE	NA physics ar	nd design		
3 Ha	no-hano proje	ect		
4 Or	ganic scintillat	ors		
	mmary			

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary
LAGUNA				

Large Apparatus for Grand Unification and Neutrino Astrophysics

- European underground laboratory design study (2008 – 2010) funded with 1.7 ME by the EU
- Study of six possible locations:
 - Canfránc (Spain)
 - Fréjus (France)
 - Boulby (England)
 - Pyhäsalmi (Finland)
 - Sieroszewice (Poland)
 - Slanic (Romania)

Scientific paper: D. Autiero et al., JCAP 0711, 011 (2007)

LAGUNA Summary Physics of LAGUNA: Proton Decay Non supersymmetric Grand Unified Theories Dominant decay mode: $p \rightarrow e^+ \pi^0$ $\tau < 1.4 \cdot 10^{36}$ y Supersymmetry (SUSY) Dominant decay mode: $p \rightarrow K^+ \overline{\nu}$ $\tau \sim (0.3 - 3) \cdot 10^{34}$ y Extra dimensions (6D) Dominant decay mode: $p \rightarrow e^+ \pi^0$ $\tau \sim 10^{35}$ v (Limits from P. Nath 2006 and S. Raby 2002) • Superkamiokande: $\tau(p \rightarrow e^+\pi^0) \gtrsim 8.2 \cdot 10^{33}$ y (90% C.L.) $\tau(p \to K^+ \overline{\nu}) \ge 2.3 \cdot 10^{33} \text{ y} (90 \% \text{ C.L.})$

Neutrino Champagne 2009

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Physics of LAGUNA: Low Energy Neutrino Astrophysics

• Supernova explosion

- High statistics in the energy spectrum of different ν -flavours
- Time evolution of the neutrino emission
- Neutrino properties: oscillation parameters
- Diffuse background of supernova neutrinos
 - Understanding of the explosion mechanism of a SN
- Solar neutrinos
 - High statistics measurements
- and Geophysics
 - Measuring radioactivity of the Earth with geoneutrinos

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Physics of LAGUNA: Neutrino Properties

- Atmospheric neutrinos:
 - Improve the measurement of sin²θ₂₃
- Reactor:
 - Precise measurement on $\Delta^2 m_{12}$ and $\sin^2 \theta_{12}$
- Detectors for accelerator experiments: θ_{13} and δ_{CP}
 - Beta beams
 - Super beams
 - Neutrino factories

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

LAGUNA detector concepts

- 80 m heigth \times 65 m \varnothing
- ~500 kt water Cherenkov detector
- 81 000 PMTs per shaft (30% coverage)
- GLACIER Giant Liquid Argon Charge
 Imaging ExpeRiment
 - 20 m heigth \times 70 m Ø
 - $m \circ~\sim 100\,kt$ liquid Ar TPC
 - Light (28 000 PMTs) + charge readout

- LENA Low Energy Neutrino Astronomy
 - 100 m long \times 30 m \varnothing
 - \sim 50 kt liquid scintillator
 - 13 500 PMTs for 30% coverage

Neutrino Champagne 2009

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Typical questions addressed in LAGUNA:

- rock mechanics of caverns
- design of tanks in relation to sites
- overburden vs. detector options
- logistic: transport, access, delivery of liquids
- safety (tunnel vs. mine) and environment (rock removal)
- relative costs

Neutrino Champagne 2009

LAGUNA	LENA	Hano-hano	Organic scintillators	

LAGUNA Design Study

- Design Study (EU funded): 2008 2010
- Prioritize the sites and down-select: July 2010
- Prioritize detector options: 2011 2012
- Phase 1 construction: 2012 2016

Summary

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary
Outline				
	GUNA physic	s and detector c	oncepts	
2 LEI	NA physics a	nd design		
3 Ha	no-hano proje	ect		
4 Org	ganic scintilla	tors		
	mmary			

Neutrino Champagne 2009

Low Energy Neutrino Astronomy

- Size: 100 m length \times 30 m \varnothing
- 50 kt of organic scintillator
- ~15 000 photosensors (including water veto)
- About 180 pe/MeV light yield
- Current design: vertical cylinder

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Proton decay $p \rightarrow K^+ \overline{\nu}$

$$T(\mathcal{K}^+)=$$
 105 MeV au $au(\mathcal{K}^+)=$ 12.8 ns

Potential of LENA in 10 y:

• For Superkamiokande current limit: $\tau = 2.3 \cdot 10^{33} \text{ y}$ o About 40 events and $\lesssim 1 \text{ bg}$

Limit at 90% (C.L) for no detected signal:
 o τ > 4 ⋅ 10³⁴ y

Phys. Rev. D, 72, 075014 (2005) and hep-ph/0511230

Neutrino Champagne 2009

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Supernova detection

 $8 M_{\odot} (3 \cdot 10^{53} \text{ erg})$ at D = 10 kpc (galactic center) In LENA detector: \sim 15000 events

Possible reactions in liquid scintillator

•
$$\overline{\nu}_e + p \rightarrow n + e^+; n + p \rightarrow d + \gamma \sim 7500 - 13800$$

•
$$\overline{\nu}_{e} + {}^{12}C \rightarrow {}^{12}B + e^{+}; {}^{12}B \rightarrow {}^{12}C + e^{-} + \overline{\nu}_{e} \sim 150 - 610$$

•
$$\nu_e + {}^{12}C \rightarrow e^- + {}^{12}N; \; {}^{12}N \rightarrow {}^{12}C + e^+ + \nu_e \sim 200 - 690$$

•
$$\nu_{\chi} + {}^{12}\text{C} \rightarrow {}^{12}\text{C}^* + \nu_{\chi}; \quad {}^{12}\text{C}^* \rightarrow {}^{12}\text{C} + \gamma \qquad \sim 680 - 2070$$

•
$$\nu_X + e^- \rightarrow \nu_X + e^-$$
 (elastic scattering) ~ 680
• $\nu_X + p \rightarrow \nu_X + p$ (elastic scattering) $\sim 1500 - 5700$

• $\nu_x + p \rightarrow \nu_x + p$ (elastic scattering)

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Diffuse Background of Supernova Neutrinos

In LENA detector: (44 kt f.v.) Event rate in 10 y:

- LL: \sim 110 events
- TBP: \sim 60 events

M. Wurm et al., Phys. Rev. D75 023007 (2007)

Information about Star Formation Rate for (0 < z < 1)

Neutrino Champagne 2009

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Solar neutrinos

 Borexino experiment
 First ⁷Be neutrino measurement (2007) Rates of solar neutrino events In the LENA fiducial volume:

 $18\cdot 10^3\ m^3$

• ⁷Be ν 's: \sim 5400 d⁻¹

Small time fluctuations (1-2% amplitude detectable at 3σ)

pep ν's: ~ 150 d⁻¹

- Information about the pp-flux
 - \rightarrow Solar luminosity in $\nu {\rm 's}$
- CNO ν's: ~ 210 d⁻¹
 - Important for heavy stars
- ⁸B ν 's: CC on ¹³C: \sim 360 y⁻¹

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Geoneutrinos

- Unexplained source of heat flow on Earth
- Unknown contribution of natural radioactivity
- How are ²³⁸U, ²³²Th distributed in core, mantle and crust?
- In liquid scintillator:
 - $\overline{\nu}_e + p \rightarrow n + e^+$

K. Hochmuth et al., Astropart. Phys. 27 (2007) 21

- In LENA detector: ~ (400-4000) events/y (Scaling KamLAND results)
- ²³⁸U/²³²Th separation due to spectral form

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Neutrino oscillations

- Reactor neutrinos $\overline{\nu}_e$
 - Determination of θ_{12} and Δm_{12}^2 at Fréjus S. T. Petcov and T. Schwetz, Phys. Lett. B642, 487 (2006)
 - Determination of θ_{13} at an underwater location J. Kopp et al., JHEP 01, 053 (2007)

Neutrinos from accelerators

Evaluation of muon/electron separation

Evaluation of track reconstruction

J. Learned (arXiv:0902.4009) and J. Peltoniemi

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Detector location

Reactor neutrinos in Europe

• Deepness: \sim 4 000 m.w.e.

- Fast neutron background for DSN-*v* signal
- ¹¹C background for solar neutrinos

Reactor neutrinos

- Background for DSN
- Signal for an oscillation experiment

from J. Peltoniemi and K. Loo

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Pre-feasibility study: Pyhäsalmi mine (Finland)

Rockplan study of excavation at 4 000 m.w.e.

- Stability of the cavity
- Tunnels, access ...

Neutrino Champagne 2009

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary
Outline				
	GUNA physic	es and detector c	oncepts	
2 LEI	VA physics a	nd design		
3 Har	no-hano proj	ect		
4 Org	janic scintilla	tors		
5 Sur	nmary			

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Hano-hano detector

- A deep ocean $\overline{\nu}_e$ observatory
 - multiple deployments
 - water shield against cosmic rays
 - variable L/E detection distance
- J. Learned, S. Dye and B. McDonough
- Joined work with LENA: meeting in July 09 at TU-Munich

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

- Studied vessel design up to 100 kilotons, based upon cost, stability, and construction ease.
 - Construct in shipyard
 - Fill/test in port
 - Tow to site, can traverse Panama Canal
 - Deploy 4-5 km depth
 - Recover, repair or relocate, and redeploy

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Geoneutrino physics with Hano-hano

- Determination of the geoneutrino flux at different locations
- Possibility to learn about radiactivity in crust and mantle

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary
Outline				
	GUNA physic	s and detector c	oncepts	
2 LE	NA physics a	nd design		
3 Ha	no-hano proje	ect		
Org	ganic scintilla	tors		
5 Su	mmary			

Neutrino Champagne 2009

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Why liquid scintillators for neutrino experiments?

- Enable large detector volumes $(\sim ton)$
- Low energy threshold (~ hundreds of keV)
- Good energy resolution (<10% at 1 MeV)
- Fast detector: position reconstruction (~ cm)
- Particle discrimination (α/β)

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Fluorescence decay-time measurements

Motivation: PD identification

- Photon counting method
- ⁵⁴Mn source: 834 keV γ 's
- PMT's time jitter: $\sigma = 0.9$ ns

LAGUNA LENA	Hano-hano	Organic scintillators	Summary

Photon emission distribution

- A short constant τ_1 , 2-8 ns -> 60 to 95% of the light
- Mixtures based on LAB are slower than those with PXE
- Influence of the τ_1 on the proton decay sensitivity

o
$$\tau > 4.2 \cdot 10^{34}$$
 y for $\tau_1 = 3$ ns
o $\tau > 3.5 \cdot 10^{34}$ y for $\tau_1 = 6$ ns

Rev. Sci. Instrum. 80, 043301 (2009)

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Scattering length measurements

- LED light source
- Detection with PMTs
- Selection of the wavelength with color filters

Results @ 430 nm

Scintillator	λ_s in m
PXE	22 ± 3
LAB	25 ± 3
Dodecan	35 ± 5

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary
Outline				
	GUNA physic	s and detector c	oncepts	
2 LE	ENA physics a	nd design		
3 Ha	ano-hano proje	ect		
4 0	ganic scintilla	tors		
5 Su	ummary			

Neutrino Champagne 2009

LAGUNA	LENA	Hano-hano	Organic scintillators	Summary

Summary

LAGUNA

- Ongoing design study for site investigation
- Final report July 2010

LENA

- Physics capabilities presented: neutrino astronomy and particle physics
- Technical feasibility seems promising
- Hano-hano
 - Main goal is the detection of geoneutrinos
 - Technical feasibility studies

First estimation of LENA total costs

1 Laboratory costs	75 M€
 Excavation costs, total 47 M€ 	
 Site investigations + surface infrastructure 	6 M€
 HEVAC costs, total 22 M€ 	
2 Detector costs	222 M€
 Construction costs, total 37 M€ 	
 Liquid handling 10 M€ 	
 PMTs (including electronics) 75 M€ 	
 Liquid scintillator (50 kT) 100 M€ 	
3 Design and consulting costs	30 M€
Reservations (risk, unforeseen 25%)	82 M€
Total (0% VAT)	409 M€
	100 1110