

Search for proton decay and dark matter with liquid scintillators

Teresa Marrodán Undagoitia

marrodan@physik.uzh.ch

Physik Institut Universität Zürich

Zürich 27.05.09

Teilchen- und Astroteilchen Seminar

Teresa Marrodán Undagoitia

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Outline

- LENA physics and design
- Proton decay and neutrino astronomy
- Scintillation processes in organic liquids
- 4 Liquid scintillator measurements

5 Summary

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Outline

- 1 LENA physics and design
- Proton decay and neutrino astronomy
- Scintillation processes in organic liquids
- 4 Liquid scintillator measurements

5 Summary

6 Current work

Teilchen- und Astroteilchen Seminar

- 50 kt of scintillator with 180 pe/MeV
- Underground location
- Pre-feasibility study: Pyhäsalmi site

vertical design is favourable in terms of rock pressure and buoyancy forces

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

LENA status

- o 2003: LENA detector-concept was proposed
- o 2003 2007: Study of physics potential and technical feasibility studies
- o End of 2007: First study of an underground location
- o 2008 2010: LAGUNA European design-study

LAGUNA: Large Apparatus for Grand Unification and Neutrino Astrophysics

D. Autiero et al., JCAP 0711, 011 (2007)

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

LAGUNA detector concepts

• MEMPHYS - MEgaton Mass PHYSics

- 80 m heigth \times 65 m \varnothing
- \sim 500 kt water Cherenkov detector
- 81 000 PMTs per shaft (30% coverage)
- GLACIER Giant Liquid Argon Charge
 Imaging ExpeRiment
 - 20 m heigth \times 70 m Ø
 - $ho~\sim 100\,kt$ liquid Ar TPC
 - Light (28 000 PMTs) + charge readout
- LENA Low Energy Neutrino Astronomy
 - 100 m long \times 30 m \varnothing
 - \sim 50 kt liquid scintillator
 - 13 500 PMTs for 30% coverage

LENA	Physics	Scintillation processes	Measurements	Summary	UZH
Outli	ne				

- LENA physics and design
- Proton decay and neutrino astronomy
- Scintillation processes in organic liquids
- 4 Liquid scintillator measurements
- 5 Summary
- 6 Current work

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Proton decay

- Theoretically favored modes
 p → *e*⁺π⁰
 p → *K*⁺ν
 -> clear signature in liquid scintillators
- Predicted lifetimes: $\tau \sim 10^{34}$ y
- Super-Kamiokande best limits: $\tau(p \to e^+\pi^0) \gtrsim 5.4 \cdot 10^{33} \text{ y} (90\% \text{ C.L.})$ $\tau(p \to K^+\overline{\nu}) \gtrsim 2.3 \cdot 10^{33} \text{ y} (90\% \text{ C.L.})$

LENA	Physics	Scintillation processes	Measurements	Summary	UZH
	1 1190100	Containadori processos	mododromonto	Gammary	02.1

Free proton decay $p \rightarrow K^+ \overline{\nu}$

$$au(K^+) = 105 \; {
m MeV} \quad au(K^+) = 12.8 \; {
m ns}$$

•
$$K^+ o \mu^+
u_\mu$$
 63.43%
• $T(\mu^+) =$ 152 MeV

7

•
$$K^+ \to \pi^+ \pi^0$$
 21.13%
• $T(\pi^+) = 108 \text{ MeV}$
• $T(\pi^0) = 110 \text{ MeV}$

LENA	Physics	Scintillation processes	Measurements	Summary	UZH
	1 1190100	Containadori processos	mododromonto	Gammary	02.1

Free proton decay $p \rightarrow K^+ \overline{\nu}$

$$au(K^+) = 105 \; {
m MeV} \quad au(K^+) = 12.8 \; {
m ns}$$

•
$$K^+ o \mu^+
u_\mu$$
 63.43%
• $T(\mu^+) =$ 152 MeV

7

•
$$K^+ \to \pi^+ \pi^0$$
 21.13%
• $T(\pi^+) = 108 \text{ MeV}$
• $T(\pi^0) = 110 \text{ MeV}$

Teilchen- und Astroteilchen Seminar

n processes Measurements	s Summary	UZH
	n processes Measurements	n processes Measurements Summary

Background rejection

- Pulse-shape analysis on the risetime
- $\bullet\,$ proton decay efficiency of $\sim 65\%$

Physics

- Energy spectrum (180 pe/MeV)
- Two peaks:
 - Kaon + Muon: $\sim 257 \ {
 m MeV}$
 - Kaon + Pions: $\,\sim$ 459 MeV
- Efficiency: $\varepsilon_E = 0.995$
- Included: protons from ¹²C

Potential of LENA (10 y measuring time)

- For Superkamiokande current limit: τ = 2.3 · 10³³ y
 About 40 events in LENA and ≤ 1 background
- Limit at 90% (C.L) for no signal in LENA:
 - o $\tau > 4.1 \cdot 10^{34}$ y with $\epsilon = 65\%$

Phys. Rev. D 72, 075014 (2005)

Supernova detection

8 M_{\odot} (3 · 10⁵³ erg) at D = 10 kpc (galactic center) In LENA detector: ~15000 events

Possible reactions in liquid scintillator

•
$$\overline{\nu}_{e} + p \rightarrow n + e^{+}$$
; $n + p \rightarrow d + \gamma$ ~ 7500 - 13800
• $\overline{\nu}_{e} + {}^{12}C \rightarrow {}^{12}B + e^{+}$; ${}^{12}B \rightarrow {}^{12}C + e^{-} + \overline{\nu}_{e}$ ~ 150 - 610
• $\nu_{e} + {}^{12}C \rightarrow e^{-} + {}^{12}N$; ${}^{12}N \rightarrow {}^{12}C + e^{+} + \nu_{e}$ ~ 200 - 690
• $\nu_{X} + {}^{12}C \rightarrow {}^{12}C^{*} + \nu_{X}$; ${}^{12}C^{*} \rightarrow {}^{12}C + \gamma$ ~ 680 - 2070
• $\nu_{X} + e^{-} \rightarrow \nu_{X} + e^{-}$ (elastic scattering) ~ 680
• $\nu_{X} + p \rightarrow \nu_{X} + p$ (elastic scattering) ~ 1500 - 5700

Diffuse Background of Supernovae Neutrinos

Information about Star Formation Rate for (0 < z < 1)

Teilchen- und Astroteilchen Seminar

Teresa Marrodán Undagoitia

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Solar neutrinos

 Borexino experiment
 -> First ⁷Be neutrino measurement (2007)

- Detection reaction: $\nu_e e^- \rightarrow \nu_e e^-$
- Sphere of 14 m Ø
- 300 tons of liquid scintillator

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Solar neutrinos

 Borexino experiment
 -> First ⁷Be neutrino measurement (2007) Rates of solar neutrino events In the LENA fiducial volume:

 $18\cdot 10^3\ m^3$

- ⁷Be ν 's: \sim 5400 d⁻¹
 - Small time fluctuations
- pep ν's: ~ 150 d⁻¹
 - Information about the pp-flux
 - \rightarrow Solar luminosity in $\nu {\rm 's}$
- CNO ν's: ~ 210 d⁻¹
 - Important for heavy stars
- ⁸B ν 's: CC on ¹³C: \sim 360 y⁻¹

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Geoneutrinos

- Unexplained source of heat flow on Earth
- Unknown contribution of natural radioactivity
- How are ²³⁸U, ²³²Th distributed in core, mantle and crust?
- In liquid scintillator:
 - $\overline{\nu}_e + p \rightarrow n + e^+$

K. Hochmuth et al., Astropart. Phys. 27 (2007) 21

- In LENA detector: ~ (400-4000) events/y (Scaling KamLAND results)
- ²³⁸U/²³²Th separation due to spectral form

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Outline

- LENA physics and design
- Proton decay and neutrino astronomy
- Scintillation processes in organic liquids
- 4 Liquid scintillator measurements

5 Summary

6 Current work

Why liquid scintillators for neutrino experiments?

- Enable large detector volumes (~ ton)
- Low energy threshold (~ hundreds of keV)
- Good energy resolution (10% at 10 MeV)
- Fast detector: position reconstruction (~ cm)
- Particle discrimination (α/β)
- High cross section for $\overline{\nu}_e$

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Organic liquid scintillators

Solvent	phenyl-o-xylylethan	linear-alkyl-benzene
Short name	PXE	LAB
	CH ₃ CH ₃ CH ₃	CH ₃ CH ₃
Formula	C ₁₆ H ₁₈	$C_9H_{12}+(CH_2)_m$ m=7-10
Density	0.986 kg/ℓ	0.863 kg/ℓ
Absorption	270 nm	260 nm
Emission	290 nm	283 nm

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Benzene structure

- Aromatic compounds
- Hybridization of carbon atoms
 0 1s² 2s¹ 2p³
- Double bound produce delocalized orbital
- *π*-orbitals in benzene produce luminiscence

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

π -orbital energy levels

- Singlet spin-states
- o $S_{10} \rightarrow S_{0i}$
- o Fast decay \sim several ns
- Triplet spin-states
- o $T_1 + T_1 \to S_{10} + S_{0i}$
- Slow rate \sim hundreds of ns
- o Dependence on the ionization density

LENA Physics	Scintillation processes	Measurements	Summary	UZH

Multi-component scintillators

Absorption (1) and emission (2) spectrum of PXE disolved in cyclohexane

Absorption (full lines) and emission (dashed lines) spectra of the fluors: p-Tp (1) and bisMSB (2) $\,$

- Problem: Solvent emission spectrum overlaps with its absorption
- Solution: Further organic additives (wavelength-shifters)
- Large overlap between solvent emission and solute absorption minimizes light losses

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Two component scintillator

- Liquid solvent
- o 20-30 ns lifetime
- Energy transfer to solute
- few g/l solute powder
- o 2-6 ns lifetime

The light output

High light yield

- \rightarrow good energy resolution + low energy threshold
 - Efficient transformation of deposited energy into photons
 - Efficient energy transfer from the solvent to the solute
- Understanding of quenching effects
 - For particles heavier than electrons: high ionization density
 - \rightarrow light losses: slow recombination time

$$ightarrow S^* + S^*
ightarrow S^+ + S_0 + e^-$$

Empirical Birk's parametrization:

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{A\frac{\mathrm{d}E}{\mathrm{d}x}}{1+kB\frac{\mathrm{d}E}{\mathrm{d}x}}$$

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Fluorescence decay time

Measurement of a signal from energy deposition by an electron

Scheme of the pulse shape for different particles types

• Main component: lifetime of the S_1 state • For high $\frac{dE}{dx}$: $T_1 + T_1 \rightarrow S_1 + S_0$ rate increases

Light propagation

- Absorption by organic impurities in the solvent

 → chemical purity of the solvent

 Scattering: Rayleigh and Mie processes
 - \rightarrow Scintillator purification: water extraction and column purification
- Absorption and reemission by the solute

$$I = I_0 \cdot e^{-\frac{x}{\lambda_a}} \cdot e^{-\frac{x}{\lambda_s}}, \quad \frac{1}{\lambda} = \frac{1}{\lambda_a} + \frac{1}{\lambda_s}$$

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Outline

- LENA physics and design
- Proton decay and neutrino astronomy
- Scintillation processes in organic liquids
- 4 Liquid scintillator measurements

5 Summary

6 Current work

LENA Physics Scintillation processes Measurements Summary UZH

Fluorescence decay-time measurements

Motivation: PD identification

- Photon counting method
- ⁵⁴Mn source: 834 keV γ 's
- PMT's time jitter: $\sigma = 0.9$ ns

LENA Physics	Scintillation processes	Measurements	Summary	UZH

Photon emission distribution

- A short constant τ_1 , 2-8 ns -> 60 to 95% of the light Related to $S_1 \rightarrow S_0$ transition
- Mixtures based on LAB are slower than those with PXE
- Influence of the τ_1 on the proton decay sensitivity

0
$$\tau > 4.2 \cdot 10^{34}$$
 y for $\tau_1 = 3$ ns
0 $\tau > 3.5 \cdot 10^{34}$ y for $\tau_1 = 6$ ns

Physics

 Evolution of the shortest decay time with solute concentration

PXE - PPO, LAB - PPO, PXE - PMP

$$t(c) = t_0 + \frac{1}{k_{xy} \cdot c}$$

Rev. Sci. Instrum. 80, 043301 (2009)

Scintillator spectra: UV-Lamp

- UV-radiation: Deuterium lamp
- Spectroscopy of the emitted light

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Scintillator spectra: electron beam

- $\sim 10 \, \text{keV}$ electron beam
- Evacuated small accelerator (10-15 kV)
- Window for the electrons: thin (300 nm) silicon nitrate membrane

Scattering length measurements

- LED light source
- Detection with PMTs
- Selection of the wavelength with color filters

Results @ 430 nm

Scintillator	λ_s in m
PXE	13.6 ± 1.7
LAB	25 ± 3
Dodecan	44 ± 7

- Systematic errors from filter efficiencies, PMT efficiencies and solid angle determination
- Study of polarized and unpolarized light

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Scattering length measurements

- LED light source
- Detection with PMTs
- Selection of the wavelength with color filters

Results @ 430 nm

Scintillator	λ_s in m
PXE	13.6 ± 1.7
LAB	25 ± 3
Dodecan	44 ± 7

- Systematic errors from filter efficiencies, PMT efficiencies and solid angle determination
- Study of polarized and unpolarized light

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Outline

- 1 LENA physics and design
- Proton decay and neutrino astronomy
- Scintillation processes in organic liquids
- 4 Liquid scintillator measurements

5 Summary

6 Current work

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Summary

Lena physics

- Good sensitivity for proton decay via $p \to K^+ \overline{\nu}$
- Supernova and solar neutrinos
- Geoneutrino measurements
- Organic liquid scintillator
 - Microscopic model presented
 - Experiments to light production: fluorescence and spectroscopy
 - Dependence of the proton decay sensitivity on the scintillator choice
 - Study of light propagation: scattering lengths

LENA	Physics	Scintillation processes	Measurements	Summary	UZH

Outline

- LENA physics and design
- Proton decay and neutrino astronomy
- Scintillation processes in organic liquids
- 4 Liquid scintillator measurements

5 Summary

UZH

Liquid xenon investigation

Physics

Two-phase xenon detector at UZH

Target mass: \sim 0.1 kg

- Study of xenon scintillation mechanism
- Investigate light and charge production by different types of particles (electron/neutron)
- Test of calibration sources for Xenon detectors

Two phase noble gas detector

- Scintillation signal (S1)
- Charge drift to the liquid-gas surface
- Proportional signal (S2)

XENON100 experiment

- 65 kg fiducial volume
- Located at the Gran Sasso Laboratory in Italy

- Indirect dark matter evidence
- WIMP detection through their interaction with Xe nuclei
- Potential to study theoretically favored mass and cross section regions

Teilchen- und Astroteilchen Seminar

Teresa Marrodán Undagoitia