

Development of a low neutron emission calibration source for the GERDA experiment

 $(\alpha-n)$ reaction

Results

2m/0.3µs

 $\rightarrow ^{208}Pb$

M.Tarka ^a, L.Baudis ^a, E.Bellotti ^d, G.Bruno ^c, C.M.Cattadori ^e, R.Dressler ^b, R.Eichler ^b, S.Fattori ^c, A.D.Ferella^a, F.Froborg^a, U.Graf^f, R.Santorelli^a, D.Schumann^b ^a University of Zurich, ^b Paul Scherrer Institute, ^c L'Aquila University, ^d University Milano Bicocca and INFN,

^e INFN Milano Bicocca and University, ^f Isotope Products GmbH Berlin

Abstract

GERDA is an experiment under construction at the LNGS (Laboratori Nazionali del Gran Sasso, 3500 m.w.e.) in Italy. It will use an array of enriched ⁷⁶Ge detectors to search for the neutrinoless double-β decay. This requires a minimized and well understood background. To reach a sensitivity of m_o < 0.13 eV in Phase II for example, a background rate of $B \le 1.10^{-3}$ cts/(kg·y·keV) is required. In addition to the gamma background induced by cosmic rays and natural radioactivity, neutrons from spontaneous fission and (α-n) reactions can provide a considerable contribution.²²⁸Th has been established as a good calibration source candidate for GERDA due to its γ-emission in the region of interest around Q_{BB} = 2.04 MeV. The most interesting line for energy calibration is the 2.6 MeV line and its single escape peak at 2.1 MeV. This work investigates the significance of the (α-n) neutron background coming from a ²²⁸Th calibration source due to its intrinsic components under the assumption that the source will be placed permanently in the GERDA-setup. For this scenario a parking position of up to 3.5 m above the detector array during data taking is assumed. For calibration runs, the source will be moved by remote control down to the detector array. First, the neutron rate from a commercial ²²⁸Th source was estimated using the software package SOURCES4mv. Subsequently an alternative source production method has been developed and tested in order to minimize the neutron yield.

Commercial²²⁸**Th source**

Commercially available sources for cryogenic applications consist of a porous ceramic contained inside a sealed stainless steel capsule, with the ceramic saturated with the isotopes. α particles emitted by ²²⁸Th interact mainly with low-Z nuclides through (α -n) reactions resulting in a neutron flux. As the ceramic is in direct contact with the radionuclides, it is the most relevant material in terms of neutron production.

Example: ²²⁸ Th in a NaAlSiO ₂ ceramic			<u>Assumptions:</u> - homogenously distributed - no impurities involved				OUTER CAPSULE INNER CAPSULE M4
E _α (²²⁸ Th-chain) = 5.2 MeV – 8.8 MeV						Stainless steel encapsulation	Cross section of the source
Isotope	²³ Na	²⁷ AI	²⁸ Si	²⁹ Si	³⁰ Si	¹⁶ O	¹⁷ O
E _{Thr} [MeV]	3.48	3.03	9.25	1.74	3.96	15.17	< 0.1
Nat.abund. [%]	100	100	92	4.68	3.09	99.76	0.04

NaAlSiO₂

ceramic

¹⁸O

0.85

 $\alpha + {}^{a}X_{b} \rightarrow {}^{a+4}Y_{b+2}^{*} \rightarrow {}^{a+3}Y_{b+2}^{*} + n$

Reaction allowed if: - $E(\alpha)$ > Coulomb barrier - $E(\alpha)$ > Threshold energy E_{Thr}

$$E_{Thr} = Q(1 + m_{\alpha}/m_{\chi})$$

The principle of $(\alpha$ -n) reactions finds its application in commercialy available neutron sources such as ²⁴¹Am-Be where α particles emitted by ²⁴¹Am produce neutrons in Be by the reaction:

 ${}^{4}\alpha_{2} + {}^{9}\text{Be}_{4} \rightarrow {}^{12}\text{C}_{6} + n$

For the GERDA experiment, such reactions must be supressed in order to minimize the neutron-induced background.

The neutron rates and spectra resulting from $(\alpha-n)$ reactions in a NaAlSiO, ceramic containing ²²⁸Th were calculated with SOURCES4mv. The sum spectrum was implemented in a MC simulation in order to estimate the neutron-induced background in the energy range around $Q_{_{RR}} = 2.04 \text{ MeV}.$

SOURCES4mv – neutron rate : 3.8·10⁻² n/s/kBq MC - Resulting neutron background : 1.10⁻⁵ cts/(kg·y·keV·kBq) $B \leq 1.10^{-3} \text{ cts/(kg·y·keV)}$ GERDA – total background goal

A reduction of the neutron background can be achieved by replacing the ceramic with materials exhibiting higher threshold energies for (α -n) reactions. This has been done by chemical and thermal treatment of ²²⁸ThCl₄ in a 1M HCl solution resulting in ThO₂. The process took place in a crucible made from a ~100 μ m thick gold foil. Gold, with a threshold energy of ~10 MeV, does not undergo (α -n) reactions in the presence of ²²⁸Th α -radiation and is thus a good matrix material for the ThO₂.

Custom ²²⁸ThO, source

20kBq ThO₂ source - Neutron measurements

The neutron rate produced by the ²²⁸ThO₂ source was measured with a ³He detector located in the LNGS laboratory. The neutrons are thermalized to ~0.03 eV using 12.5 cm of PE between the source and the ³He tube and counted via the energy release of 764 keV in the 3 He(n,p) 3 H reaction. **Detector efficiency:**

Activity loss during chemical and thermal treatment

The activity loss during the treatment of the ²²⁸ThCl₄ solution has been estimated by comparing the ²²⁸Th γ-spectra, taken with a 4x4cm Ge detector to Monte Carlo simulations. The nominal at 20 kBq, and the best fit between data and Monte Carlo simulations

