GERDA experiment A search for neutrinoless double beta decay

Roberto Santorelli

(Physik-Institut der Universität Zürich) on behalf of the GERDA collaboration

ÖPG/SPS/ÖGAA meeting – 04/09/09

MOTIVATIONS

Next challenges in neutrino physics:

- Majorana or Dirac nature of the particle
- Mass hierarchy
- Absolute mass scale

NEUTRINOLESS DOUBLE BETA DECAY

Second order process detectable if the first order process is energetically forbidden

Ov mode forbidden in the SM Possible only for $\begin{cases} v = \overline{v} \\ m_v \neq 0 \end{cases}$ (Majorana particle) $\Delta L = 2$

⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
$^{124}Sn \rightarrow ^{124}Te$	2.228	5.64
$^{130}\text{Te}{\rightarrow}^{130}\text{Xe}$	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}\text{Nd}{\rightarrow}^{150}\text{Sm}$	3.367	5.6

Candidate

$$^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^{-1}$$

 $Q_{\beta\beta}(76Ge)=2039keV$

Q(MeV) Abund(%)

EXPERIMENTAL SIGNATURE

Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198.

EXPERIMENTAL REQUIREMENTS

- Large amount of $0\nu\beta\beta$ isotopes
- Good energy resolution
- Extremely low background

<u>GERDA</u> \rightarrow ⁷⁶Ge detectors for $0 \nu \beta \beta$

- High Q-value
- Very pure detectors \rightarrow natural radioactivity contribution reduced
- Large target mass \rightarrow Enrichment in ⁷⁶Ge (86%)
- Very good energy resolution $\rightarrow \Delta E/E (Q_{\beta\beta}) \sim 0.2\%$
- LAr as cooling and shielding
- Surrounding materials minimized

Detector loaded from top of the thank through a clean room area

Jagellonian University - Cracow, Poland
Technische Universität - Dresden, Germany
Joint Institute for Nuclear Research - Dubna, Russia
Institute for Reference Materials and Measurements - Geel, Belgium
Max-Planck-Institut für Kernphysik - Heidelberg, Germany
Russian Academy of Sciences - Moscow, Russia
Institute for Theoretical and Experimental Physics - Moscow, Russia
Russian Research Center Kurchatov Insitute - Moscow, Russia
Gran Sasso National Laboratory - L'Aquila, Italy
Universita Milano Bicocca - Milano, Italy
Max-Planck-Institut für Physik - München, Italy
Universita di Padova - Padova, Italy
Eberhard Karls University - Tübingen, Germany
University of Zürich - Zürich, Switzerland

14 institutions

- p-type coaxial detectors
- 5 He-Mo detectors
- 3 IGEX
- Refurbished by Canberra and tested in LAr
- •Total 17.9 kg enriched Ge
- Exposure ~ $30 \text{ kg} \cdot \text{y}$
- bck: 0.01 cts/(keV \cdot kg \cdot y)
- $T_{1/2} \rightarrow 2 \cdot 10^{25} \text{ y}$

Cryotank (Mar. 08)

Water tank (Aug. 08)

PHASE II

PHASE II : add new p/n-type coaxial detector

- 86% enrichment
- 37.5 kg already available
- segmentation? unsegmented Broad Energy det? (R&D on ongoing)
- Exposure ~ $100 \text{ kg} \cdot \text{y}$
- bck: 0.001 cts/(keV \cdot kg \cdot y)
- $T_{1/2} \ge 15 \cdot 10^{25} \text{ y}$

Single and Multi-site event discrimination:

• segmented detectors

PRESENT STATUS

- Installation of the clean room (May 09)
- Mounting of the muon veto PMTs (Aug 09)
- Cryostat filling (Sep 09)
- Temporary commissioning lock for Phase I completed by the end of the year

- Phase I detector reprocessed and tested in LAr
- \rightarrow FWHM (1.33MeV) ~ 2.5 keV
- \rightarrow leakage current stable

• Phase II R&D ongoing

²²⁸Th calibration source

- Sufficient number of lines
- Energy calibration in the region of interest (SEP ²⁰⁸Tl)
- Pulse shape discrimination

• 228Th
$$\rightarrow \alpha$$
 emitter $\overline{E}(\alpha) \sim 6.5 \text{ MeV}$
 $E_{\text{max}}(\alpha) = 8.8 \text{ MeV}$

 \Rightarrow neutrons produced through (α ,n) with the ceramic pallet of the commercial sources

Neutron Rate =
$$3.8 \ 10^{-2} \text{ n/(s \cdot kBq)}$$

 $E_{mean} = 1.45 \text{ MeV}$

MC simulations:

350 cm LAr attenuation 6.7 $\cdot 10^7$ neutrons considered $\downarrow\downarrow$

- Mean interaction probability ~ $4 \cdot 10^{-4}$
- 1.0×10^{-5} cts/(keV·kg·y·kBq)
- 6.0×10^{-4} cts/(keV·kg·y) @ 3×20 kBq

New low-n rate source development

Aim: reduction of the neutron flux through the development of a new setup

Gold: no oxidation Threshold for $(\alpha,n) \sim 9.94$ MeV

Collaboration with PSI

200 °C

MC simulations:

Neutron flux ~ 5.0×10^{-4} n/(s · kBq)

 $E_{mean} = 2.5 \text{ MeV}$

 $B = 8.6 \times 10^{-8} \operatorname{cts}/(kg \cdot keV \cdot y \cdot kBq)$ $B = 5.1 \times 10^{-6} \operatorname{cts}/(keV \cdot kg \cdot y) @ 3 \times 20 kBq$

CONCLUSIONS

- Construction is ongoing
- Phase I : 8 diodes (~18 kg) refurbished and ready
- Complete installation and start apparatus commissioning by the end of 2009
- Expected bkg level ~ 0.01 cts/(keV \cdot kg \cdot y)
- Parallel R&D for **Phase II** (Goal: 0.001 cts/(keV \cdot kg \cdot y)

Sensitivity of $0\nu\beta\beta$ decay experiments

Half life
$$\rightarrow$$
 $T_{1/2} \sim a \cdot \mathcal{E} \cdot \sqrt{\frac{m \cdot t}{\Delta E \cdot B}} \cdot M_{nucl}$

- $m \rightarrow active target mass$
- $B \rightarrow$ background rate
- a \rightarrow enrichment of isotopes (<1)
- $\epsilon \rightarrow$ signal detection efficiency (<1)
- $\Delta E \rightarrow energy resolution$
- $t \rightarrow$ measuring time
- $M \rightarrow$ nuclear matrix elements

In order to discriminate between normal and inverted hierarchy, we need an experiment with sensitivity down to ~10mV scale

