CDMS-II to SuperCDMS WIMP search at a zeptobarn

Tobias Bruch University of Zürich 5th Patras Workshop on Axions,WIMPs and WISPs University of Durham, 13 July 2009

CDMS-II 5 Tower setup

- 5 Towers a 6 detectors (Ge/Si) operated at cryogenic temperatures (~40 mk)
- Underground laboratory shields well against cosmic radiation

CDMS detectors

5th Patras Workshop on Axions, WIMPs and WISPs, University of Durham, July 13, 2009 Tobias Bruch, University of Zürich

Primary background rejection

Dominant backgrounds (γ, e[±]) produce electron recoils

WIMPS and neutrons produce nuclear recoils

Suppressed ionization signal for nuclear recoils

Define ionization yield:

Yield based rejection

remains.

Ionization suppression in good agreement with Lindhard theory

Backgrounds in CDMS-II

Low yield surface events are the dominating background

Surface contaminations of the crystals

Environmental ^{222}Rn deposits ^{210}Pb β source on the surface of the crystals

Expected signature: Low energy β decay

→ detect the ~46 keV peak

Select decay by NND events

Second signature of 210 Pb

²¹⁰Bi \rightarrow ²¹⁰Po \rightarrow ²⁰⁶Pb + α

Select alphas from NND: low yield α + recoiling ²⁰⁶Pb nucleus

Build full surface event model to determine the β rate from ²¹⁰Pb contamination

Break down of numbers

5th Patras Workshop on Axions, WIMPs and WISPs, University of Durham, July 13, 2009

Break down of numbers

black = 10 ⁻³ counts/ detector/day blue = 10 ⁻³ counts/kg/ day (eff-corr.)	²¹⁰ Pb decays		10-100 keV surface event singles		Remanent β rate not associated with ²¹⁰ Pb decays
Total, all towers			65 ±	32 183	2
Total, T12			89 ±	29	
			509 ±	166	36
Total, T345			49 ±	23	23
			280 ±	131	
²¹⁰ Pb, all towers	525 ±	420	42 ±	32	Photons can knock off
	3000 ±	2400	240 ±	183	electrons from materials
²¹⁰ Pb, T12	830 ±	420	66 ±	29	29
	4743 ±	2400	377 ±	166	6
²¹⁰ Pb, T345	320 ±	280	26 ±	23	Additional source of B event
	1829 ±	1600	149 ±	131	
non-210Pb, all			23 ±	11	
towers			131 ±	63	$\overset{3}{\blacksquare}$ Bate can be measured from
photon expected,			38 ±	18	solibustion data
all towers			217 ±	103	calibration data

5th Patras Workshop on Axions, WIMPs and WISPs, University of Durham, July 13, 2009

events

Timing of phonon signals

Surface events are faster in timing than bulk nuclear recoils

Timing is a powerful discriminator for surface events

5th Patras Workshop on Axions, WIMPs and WISPs, University of Durham, July 13, 2009

10

Tobias Bruch, University of Zürich

Surface event rejection cut

Defined on calibration data

Applied to low background data

Surface event rejection ~ 200:1

Cut set to allow ~0.5 events total leakage to WIMP candidates

Unblinding the signal region

 $0.6_{-0.3}^{+0.5}$ (stat.) $_{-0.2}^{+0.3}$ (syst.) No events observed in

Quality, Singles, Veto Fiducial volume Nuclear recoil band Phonon timing

0 5

10

15

20

Coadded lowbackground data for Ge detectors after timing cut

5th Patras Workshop on Axions, WIMPs and WISPs, University of Durham, July 13, 2009 Tobias Bruch, University of Zürich

Spin-independent Spin-dependent 10-40 10⁻³⁶ Roszkowski et al. 2007 95% CI kowski et al. 2007 68% CI Spin-independent cross section [cm²] DELWEISS 2005 WIMP-neutron σ_{SD} [cm²] +2T Ge Reanalysis 10-41 10⁻³⁷ 10⁻⁴² 10⁻³⁸ 10^{-39} 10-43 10^{-40} 10-44 10^{2} 10^{3} 10^{1} 10³ 10² 10¹ WIMP mass $[GeV/c^2]$ WIMP mass [GeV/c²] 2.7x10⁻³⁸ cm² @ 60 GeV 6.6x10⁻⁴⁴ cm² @ 60 GeV 1.8x10⁻³⁸ cm² @ 60 GeV 4.6x10⁻⁴⁴ cm² @ 60 GeV (combined with previous CDMS data) (combined with previous CDMS data)

5th Patras Workshop on Axions, WIMPs and WISPs, University of Durham, July 13, 2009

Electromagnetic Dark Matter signatures ?

What if we miss a dark matter signal due to an electron recoil interaction ?

Analysis motivated by the DAMA/LIBRA modulation signature.

5th Patras Workshop on Axions, WIMPs and WISPs, University of Durham, July 13, 2009 Tob

Low energy spectrum

5th Patras Workshop on Axions, WIMPs and WISPs, University of Durham, July 13, 2009 Tobias Bruch, University of Zürich

Comparison with DAMA/LIBRA

 Z^2 scaling of the CDMS upper limits is an arbitrary toy model

In need of an actual particle model to perform physical interpretation

5th Patras Workshop on Axions, WIMPs and WISPs, University of Durham, July 13, 2009 Tobias Bruch, University of Zürich

5 Towers - the second part

- → Second run with the 5 Tower setup since July 2007
- → Factor ~2.5 more exposure
- → Improved data processing
- → New phonon pulse information yielding possible discrimination potential
- → Aim to keep expected backgrounds at the same (better lower) level as for the most recent analysis

Analysis of the data is ongoing while we speak

17

Surface event discrimination

T1Z5 calibration data

Timing for the new data looks promising in obtaining higher nuclear recoil detection efficiency

CDMS-II sensitivity till 2009

The dawn of a new age

Final tuning of the first super tower last week ready for taking data

Improved timing information

New phonon sensor configuration strongly improves the timing discrimination

Detectors used in the next Stage of CDMS

CDMS-II to SuperCDMS 100kg

<u>Summary</u>

- Excellent knowledge of the backgrounds and discrimination make the CDMS-II experiment to a zero background experiment
- Latest CDMS-II results set an world leading 90%CL exclusion limit on the WIMP nucleon cross-section for masses > 42 GeV
- Started to look not only for "standard" dark matter interactions
- Final CDMS-II data has been taken and is currently under analysis with final results expected in August this year
- Successful development and integration of the first SuperTower used in the next stage of the CDMS experiment
- Continuos improvements of the CDMS collaboration in reaching the zeptobarn sensitivity

The CDMS-II Collaboration

<u>Caltech</u> Z. Ahmed, J. Filippini, S. R. Golwala, D. Moore, R.W. Ogburn

<u>Case Western Reserve University</u> D. S. Akerib, C. N. Bailey, K. Clark, M.R. Dragowsky, D. R. Grant, R. Hennings-Yeomans

<u>Fermilab</u> D.A. Bauer, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, J. Yoo

<u>MIT</u> E. Figueroa-Feliciano, S. Hertel, S. Leman, K. McCarthy

<u>NIST</u> K. Irwin

Queens University W. Rau

Santa Clara University B.A.Young

<u>Stanford University</u> P.L. Brink, <u>B. Cabrera</u>, J. Cooley, M. Pyle, S. Yellin <u>Syracuse University</u> M. Kiveni, M. Kos, R.W. Schnee

<u>Texas A&M</u> R. Mahapatra

<u>University of California, Berkeley</u> M. Daal, N. Mirabolfathi, <mark>B. Sadoulet</mark>, D. Seitz, B. Serfass, K. Sundqvist

<u>University of California, Santa Barbara</u> R. Bunker, D. O. Caldwell, H. Nelson, J. Sander

<u>University of Colorado at Denver</u> M. E. Huber

<u>University of Florida</u> T. Saab, D. Balakishiyeva

<u>University of Minnesota</u> P. Cushman, L. Duong, M. Fritts, V. Mandic, X. Qiu, A. Reisetter, O. Kamaev

<u>University of Zurich</u> S.Arrenberg, T. Bruch, L. Baudis

BACKUP SLIDES

Understanding the origin of our backgrounds

Backgrounds for the new data

Gamma spectrum, T4 germanium ZIPs only

210 Pb decay scheme

Expected signature: Low energy beta decay -> detect the ~46 keV peak