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Abstract

In this Bachelor’s thesis the critical magnetic fields of the Bose-Einstein condensed (BEC)
phase in the quantum spin-dimer system Ba3−xSrxCr2O8 is investigated. This work aims
to contribute to the remaining question of the influence of different x values on the critical
magnetic field. In the first part, the magnetization M as a function of the temperature T
of the polycrystalline samples is measured using the superconducting quantum interference
device (SQUID) of the Physics Department of the University of Zurich. As the second part, the
magnetizationM as a function of the magnetic field H is measured in high-field magnetometry
experiments. These measurements are performed at the High Magnetic Field Laboratory in
Dresden-Rossendorf (HZDR).
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1 Basic Principles

1.1 Bose-Einstein Condensation (BEC)

In 1925 A. Einstein [2] predicted a phenomenom where identical bosonic particles or molecules
of an ideal gas occupy the lowest quantum state if the system is sufficiently cooled [5]. Ein-
stein’s work based on the ideas of S. N. Bose [3] who derived the Planck law for black-body
radiation by treating the photons as a gas of identical bosonic particles.

Cooling a system of bosons to temperatures close to absolute zero allows most of the bosons
to occupy the ground state simultaneously. This is only possible for bosons since they have
integer spin and do not obey the Pauli principle (in contrast to fermions). Furthermore, these
„condensed“ particles are not separated in real space from the non-condensed particles but
in momentum space [4]. The behaviour of the system can then be described by a single
macroscopic wave function. One has to emphasize that the condensation is only driven by the
particle statistics and not by their interactions.

Today this phenomenon is called „Bose-Einstein condensation“ (BEC). The first experi-
mental evidence for this specific phase transition could finally be obtained in superfluid 4He
and later on in dilute atomic gases by groups at the JILA and the MIT in 1995 [1].

As recent research [7, 10, 12, 13, 14] has indicated, the concept of BEC is not only ap-
plicable for cold gases or liquid helium but also for bosonic quasiparticles in solids.

1.2 BEC of triplons in spin-dimer systems

In order to describe the reduction of spontaneous magnetization by thermal fluctuations in
solids F. Bloch [6] introduced the concept of magnons in 1930. Magnons are particles with
integer spin and therefore obey Bose-Einstein statistics. Furthermore they can be seen as
quantized spin waves (analogous to phonons in crystal lattices) [8].
In addition to Blochs work, Matsubara and Matsuda used a lattice model to describe the
peculiar properties of liquid helium in 1956 [9]. They were able to show that there exists an
exact correspondence between a magnet and a lattice Bose gas.
These investigations led to the question whether it is possible for magnons to undergo a BEC.
In 2000, researchers at the Tokyo Institute of Technology were able to answer this question
by interpreting magnetization data as a BEC of magnons in TlCuCl3 [10].

Certain magnetic insulators such as TlCuCl3 consist of closely paired spin-1
2 -particles, forming

dimers with a spin-singlet (S = 0) ground state and triplet (S = 1) bosonic excitations called
triplons (note that terms triplon and magnon are used interchangeably in most literature
since they have the same quantum numbers). Thereby the singlet ground state is identified
with the absence of a triplon and the excited triplet state with the presence of a triplon.
Considering TlCuCl3, there exist several different interactions. The antiferromagnetic in-
tradimer interaction J0 is the strongest interaction. Furthermore there exist two relevant
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interdimer interactions J1 and J2. The J1-interaction is the coupling between neighbouring
dimers of the same layer while the J2-interaction is the coupling between dimers of different
layers (see Fig. 1). If the interdimer interactions are weak, the ground state consists of
non-magnetic singlets and remains without long-range magnetic order down to absolute zero
temperature [7].

Figure 1: From [7]. Dimers of TlCuCl3 with dominant antiferromagnetic intradimer interaction
J0 and interdimer interactions J1 and J2. Triplet states (grey, top) are mapped
onto quasiparticle bosons (triplons, bottom).

The BEC transition occurs when the energy of one of the Zeeman split triplet excitations
intersects the ground-state singlet, resulting in a long-range magnetic order. This can be
achieved by applying a critical external magnetic field so that the Zeeman energy gµBµ0H

(where g is the Landé factor, µB is the Bohr magneton, µ0 is the magnetic constant and H is
the external magnetic field) overcomes this spin gap (see Fig. 2) [11].
The energy (up to the first order in J1) of a triplon in a square lattice of dimers has the
following form:

ε(~k) = J0 + J1 [cos (kxa) + cos (kya)]− gµBµ0HS
z, (1)

where ~k = (kx, ky) is the wave vector of the triplon, a is the lattice constant and Sz = 0,±1
is the spin projection of the triplon along the quantization axis.
The last term in Eq. (1) is the Zeeman term which controls the density of triplons. As a
consequence of this, controlling the external magnetic field is equal to controlling the number
of triplons appearing in the ground state. The magnetic field then acts as a chemical potential
[13].
The first critical field Hc1 defines the strength of the magnetic field where the excitation
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Figure 2: From [7], modified. Zeeman splitting of the triplet states with gap ∆ and bandwidth
D (left). Resulting phase diagram where a magnon BEC occurs. Close to Hc1 and
Hc2 the phase boundary follows a power law Tc ∝ (H −Hc1)φ. Inset, magnetization
curve mz(H) for a three-dimensional dimer spin system (right).

energy of the triplon with Sz = −1 crosses zero (see Fig. 2, left). The second critical field Hc2

is reached when the magnetization saturates and each site is occupied by one triplon. The
system’s new ground state then is Sz = −1. Furthermore, it can be seen from Fig. 2 (right)
that at zero temperature the magnetization mz(H) is zero and only singlets exist below Hc1.
Between the two critical fields the magnetization increases with increasing field because more
and more triplons appear in the ground state [7].

1.3 BEC phase of the spin-dimer systems Ba3Cr2O8 and Sr3Cr2O8

The detailed lattice structure of the isostructural Ba3Cr2O8 and Sr3Cr2O8 is shown in Fig. 3
(for detailed information on that topic see [15]). The focus lies on the phase diagrams of these
two materials. Measurements to establish these phase diagrams were made by A. A. Aczel et
al. (see Fig. 4 and Fig. 5). As one can see, the BEC phase of the Ba3Cr2O8 can be found in
lower magnetic fields (ranging from about 12.5 T to about 23.8 T) compared to Sr3Cr2O8

(ranging from about 30.5 T to about 62.0 T). Furthermore, the maximum of the BEC phase
of the Ba-compound can be found at temperatures of about 2.3 K whilst the maximum of the
Sr-compound is at about 7.8 K [13, 14].
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Figure 3: From [17], modified. Crystal structure of Ba3−xSrxCr2O8 at room temperature.
The Cr-tetrahedron is shown in dimer configuration on the right, the Ba1/Sr1-
dodecatope is shown on the bottom and the Ba2/Sr2-decatope is shown on the top
of the drawing.
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Figure 4: From [13], modified. Phase diagram of Ba3Cr2O8.

Figure 5: From [14], modified. Phase diagram of Sr3Cr2O8. The ordered region is shaded as a
guide to the eye.
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2 Experimental Setup

2.1 Measuring M(T) in low magnetic fields

In order to measure the magnetic moment m as a function of the temperature T , the sample is
moved inside a pick-up coil system. The equipment used for this work is the QuantumDesign
MPMS (Magnetic Properties Measurement System) which consists of a superconducting
quantum interference device (SQUID). The SQUID allows to measure the total magnetic
moment with a high sensivity.
After weighing, the samples are put into a non-magnetic tube before being inserted into the
MPMS. The sample space is then purged several times with He-gas to ensure a negigible
oxygen content. Maintaining a low pressure He-atmosphere allows a sufficient thermal contact
between the sample and the thermal bath of the MPMS.

The obtained magnetization data is analyzed by approximating the sample as a magnetic
dipole and fitting the SQUID-signal accordingly. For the experiments, the main interest lies
in the changes of the magnetization as a function of the temperature and not its absolute
magnitude. Demagnetization factors are negligible in these systems [17].

2.2 Experimental setup of the high-field magnetometry measurements

The high-field magnetometry experiments were performed at the High Magnetic Field Labo-
ratory in Dresden-Rossendorf (HZDR). In order to achieve extremely high magnetic fields,
a capacitor with a stored electrical energy of about E = 20 MJ is discharged through a
specifically designed coil (see Fig. 6). A quick discharge of the capacitor results in a high
current in the coil, inducing fields up to Bmax = 100 T. From this rapidly changing field, a
characteristic voltage pulse UB is induced in the main pick-up coil.

In the same way does the changing magnetization of the sample induce a voltage UM in
the sample pick-up coil. An identical compensation coil is used to subtract the main field
contribution. Due to the fact that the two pick-up coils do not produce exactly the same
signals, a potentiometer is used to fine-tune the compensation.

The absolute field and magnetization as a function of time are found by integration of
the voltage signals over time and applying a calibration factor. The features of the crit-
ical fields are calculated from the second derivative of the magnetization. The magnetic
susceptibility is

χ = ∂M

∂B
∝ UM
UB

, (2)

and from that, we obtain the second derivative of the magnetization as

∂2M

∂B2 = ∂χ

∂B
= ∆χ

∆B = ∆χ
UB∆t ∝

∆χ
UB

(3)
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where ∆χ is the difference between consecutive values of χ and ∆t is the (constant) time
difference between consecutive measurements [17].

Figure 6: From [17]. Illustration of the principles of pulsed field magnetometry. 1: Main coil
(with capacitor and switch), 2: Pick-up coil (with sample in green), 3: Compensation
coil (with potentiometer), 4: Pick-up coil for main field. The plots on the right side
show the voltages in the main pick-up coil (lower graph) and the sample pick-up
coil (upper graph) as a function of time.
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3 Measurements

3.1 Characterization of the samples

In order to test whether the samples exhibit the desired characteristics or not, the magnetic
moment m as a function of the temperature T in a range from 2 K to 300 K was measured
in a magnetic field of 1 T using the SQUID of the Physics Department of the University of
Zurich. Fig. 7 shows the obtained data.
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Figure 7: Measurement of the magnetic moment m(T ) per Cr5+-ions in µB as a function of
the temperature T for a magnetic field of 1 T for Ba3−xSrxCr2O8. The red lines
denote the fit according to the sum of Eqs. (4) and (5).

At temperatures above 70 K the thermal energy is large enough to overcome the dimer interac-
tion between the Cr5+-ions and m(T ) is similar to the case of a paramagnet. At temperatures
below 70 K, however, the dimer interaction leads to the forming of paramagnetically disordered
singlets.
The Bleaney-Bowers equation for interacting dimers is,

M(T ) = ndg
2µBµ0Hext

Je + kBT

(
3 + e

Jd
kBT

) , (4)

where nd is the density of the coupled ions, g is the Landé factor, µB is the Bohr magneton,
µ0 is the magnetic constant, Hext is the external magnetic field, kB is the Boltzmann constant,
Je is the interdimer interaction constant, Jd is the intradimer interaction constant and T is
the temperature.
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The paramagnetic background is based on the Brillouin function,

M(T ) = nP gµB
1
2

(
2 coth

(
gµBBext
kBT

)
− coth

(
gµBBext

2kBT

))
, (5)

where nP is the density of the corresponding uncoupled ions. The data can be well described
by the sum of Eq. (4) and Eq. (5).

3.2 High-field magnetometry

There are two different methods used to obtain the features of the critical magnetic fields
of the high-field magnetometry experiments. The first method is to calculate the features
from the first order derivative of M with respect to H. Fig. 8 shows the obtained data for
values of x ranging from 2.5 to 3.0 (note that the data is smoothed using a gliding average).
Conspicuous is the fact, that the saddle points for decreasing x get more and more smeared
out.

Figure 8: ∂M/∂H as a function of the external magnetic field H for Ba3−xSrxCr2O8.

To obtain the features of the critical fields, the intersection points of linear fits are calculated
as it is shown in Fig. 9 for the sample Ba0.1Sr2.9Cr2O8.
The intersection point is calculated by equalizing two straight lines y = ax+ b and y = cx+ d,

x = d− b
a− c

, (6)
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Figure 9: ∂M/∂H as a function of the magnetic field H for Ba0.1Sr2.9Cr2O8. The red lines
represent linear fits which are used to obtain the features in the derivative of the
magnetization.

and the error follows using simple error propagation

mx =

√( 1
a− c

)2
·m2

d +
( −1
a− c

)2
·m2

b +
(−(d− b)

(a− c)2

)2
·m2

a +
(−(d− b)

(a− c)2

)2
·m2

c . (7)

The plots and data analysis is made with OriginPro 9.1 which automatically calculates all the
fit-parameters and the corresponding errors (as can be seen in Tab. 1 for Ba0.1Sr2.9Cr2O8).

linear fit intersection with y-axis slope
1 5.40(5) · 10−6 1.74(3) · 10−7

2 −2.76(3) · 10−4 1.06(1) · 10−5

3 5.17(3) · 10−5 4.9(9) · 10−7

Table 1: Values for the parameters of the linear fits (calculated with OriginPro 9.1 ) for
Ba0.1Sr2.9Cr2O8.
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The results for the calculated features is summarized in Tab. 2. One sees that with decreasing
x the features are shifted to lower magnetic fields.

material feature 1 feature 2
Sr3Cr2O8 29(7) 32(7)
Ba0.1Sr2.9Cr2O8 27(4) 31(5)
Ba0.2Sr2.8Cr2O8 25(3) 30(3)
Ba0.3Sr2.7Cr2O8 22(2) 31(2)
Ba0.4Sr2.6Cr2O8 22(2) 30(1)
Ba0.5Sr2.5Cr2O8 19(2) 29(2)

Table 2: Calculated features of the critical magnetic fields for the different materials.

The second method to determine the features of the critical fields is the analysis of the second
order derivative of the magnetization M with respect to H. The BEC of triplons in spin-dimer
systems is a second order phase transition. The system is described by the thermodynamic
potential G(T,H) (where G is the free enthalpy or Gibbs potential). From the Ehrenfest
classification for phase transitions follows that a second order phase transition is characterized
by a continuous first derivative of G with respect to its natural variables T and H at the
transition point, whereas at least one of the second derivatives features a discontinuity at this
point. This discontinuity then leads to a δ-peak in the third derivative of G.
The first derivative of G is the magnetization M , so that we have

M(T,H) = − ∂G
∂H

(8)

∂M

∂H
= − ∂

2G

∂H2 (9)

∂2M

∂H2 = − ∂
3G

∂H3 (10)

Fig. 10 shows the corresponding measurement. For decreasing x the features of the critical
fields shift away from the reported critical field of Sr3Cr2O8 (dashed line in Fig. 10) and are
more and more smeared out, as it can be clearly seen for Ba0.5Sr2.5Cr2O8.
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Figure 10: ∂2M/∂H2 as a function of the magnetic field H for Ba3−xSrxCr2O8. The black
circles mark the features due to the critical field. Note that the features are scaled
differently for clarity. The dashed line marks the feature for a mono-crystal sample
of Sr3Cr2O8 [19].
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4 Results and Discussion

The Ba3−xSrxCr2O8 samples with values of x ranging from 2.5 to 3.0 have been measured in
high-field magnetometry experiments. In order to calculate the critical magnetic field, two
different methods have been used. The results calculated from these two methods can be seen
in Fig. 11. For systems with weak interdimer interactions the minimal energy of a triplon
does specifically depend on the intradimer interaction constant J0 and the minimal energy
should also correspond directly with the critical field. For a fixed value of g the critical field
should thus be roughly proportional to J0, if the interdimer interactions do not change [21].
Therefore, we can calculate an estimate for the critical field He

c (x) in order to compare the
results,

He
c (x) = HSr3

c · J0(x)
JSr3

0
, (11)

where HSr3
c is the critical field for Sr3Cr2O8 (calculated from Fig. 10), J0(x) is the intradimer

interaction constant (calculated from Fig. 7) and JSr3
0 is the intradimer interaction constant

of Sr3Cr2O8.
Besides the values x = 2.5 and x = 2.7, the extrema calculated in d2M

dH2 fit best with the
estimated fields. One has to emphasize that these estimates only depends on the intradimer
interaction constants whilst the higher order interaction constants are neglected. Furthermore,
from the d2M

dH2 data we can also conclude that the critical fields shift to lower magnetic fields
for increasing x (see Fig. 10).
Beyond that, only the critical field Hc1 could be observed in these measurements. The reason
for that stems from the fact that only fields up to 60 T were applied.

For future experiments, I suggest to apply magnetic fields up to 65 T in order to mea-
sure the second critical field Hc2 as well. Furthermore, from heat capacity measurements it
would be possible to determine the full phase diagram for Ba3−xSrxCr2O8 similar to Fig. 4
and Fig. 5.
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Figure 11: The red and blue triangles represent the features in dM/dH an the dashed green
line represents the critical fields in dM/dH. The extrema calculated from d2M/dH2

are represented by the black diamonds. As a comparison, the estimated critical
field He

c (x) (Eq. (11)) is plotted (magenta circles), where the value for x = 2.5 is
taken from [20]. The bold dashed lines represent trendlines as a guide to the eye.
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7 Appendix

7.1 Determination of the critical magnetic fields using linear fits

Figure 12: ∂M/∂H as a function of the magnetic field H for Sr3Cr2O8. The red lines represent
linear fits.

linear fit intersection with y-axis slope
1 −1.71(7) · 10−6 3.8(4) · 10−7

2 −6.6(1) · 10−3 2.24(3) · 10−5

3 7.30(4) · 10−5 −2.9(1) · 10−6

Table 3: Values for the parameters of the linear fits (calculated with OriginPro 9.1 ) for
Sr3Cr2O8.
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Figure 13: ∂M/∂H as a function of the magnetic field H for Ba0.2Sr2.8Cr2O8. The red lines
represent linear fits.

linear fit intersection with y-axis slope
1 4.40(9) · 10−6 4.02(5) · 10−7

2 −1.53(2) · 10−4 6.68(5) · 10−6

3 5.34(4) · 10−5 −9(1) · 10−6

Table 4: Values for the parameters of the linear fits (calculated with OriginPro 9.1 ) for
Ba0.2Sr2.8Cr2O8.

20



Figure 14: ∂M/∂H as a function of the magnetic field H for Ba0.3Sr2.7Cr2O8. The red lines
represent linear fits.

linear fit intersection with y-axis slope
1 4.00(4) · 10−6 6.11(2) · 10−7

2 −4.45(4) · 10−5 2.78(1) · 10−6

3 4.87(3) · 10−5 −2.70(9) · 10−7

Table 5: Values for the parameters of the linear fits (calculated with OriginPro 9.1 ) for
Ba0.3Sr2.7Cr2O8.
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Figure 15: ∂M/∂H as a function of the magnetic field H for Ba0.4Sr2.6Cr2O8. The red lines
represent linear fits.

linear fit intersection with y-axis slope
1 4.63(6) · 10−6 8.19(4) · 10−7

2 −3.19(2) · 10−5 2.492(9) · 10−7

3 4.90(2) · 10−5 −1.68(7) · 10−7

Table 6: Values for the parameters of the linear fits (calculated with OriginPro 9.1 ) for
Ba0.4Sr2.6Cr2O8.
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Figure 16: ∂M/∂H as a function of the magnetic field H for Ba0.5Sr2.5Cr2O8. The red lines
represent linear fits.

linear fit intersection with y-axis slope
1 8.81(8) · 10−6 1.019(5) · 10−7

2 −1.52(1) · 10−5 2.263(6) · 10−7

3 5.92(3) · 10−5 −3.20(10) ·10−7

Table 7: Values for the parameters of the linear fits (calculated with OriginPro 9.1 ) for
Ba0.5Sr2.5Cr2O8.
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