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Abstract

Strontium chromium oxide (Sr3Cr2O8) and barium chromium oxide (Ba3Cr2O8) are three-
dimensional weakly coupled spin-1/2 dimer systems. They are characterised by magnetic Cr5+

(3d1,s = 1/2) ions, which upon interaction form dimers with a dominant intra-dimer coupling constant
(J0). As a consequence, a singlet ground state (S = 0) and a triplet excited state (S = 1) are formed,
their energy difference corresponds to the spin gap (∆). In order to study the magnetic properties of
the system, the spin gap has to be quantified. Commonly, this is done by performing inelastic neutron
scattering (INS) experiments. Interestingly, the energy gap may also be estimated by a heat capacity
measurement. In fact the thermal excitation of spin dimers appears like a broad peak in the heat
capacity (Schottky anomaly), which shape and position depend on the energy gap ∆.

The aim of this work is the investigation of the heat capacity as a valid technique for the estimation
of the energy gap in a three-dimensional spin dimer system. Indeed, this technique is a simpler way
than INS and it could be accessible in many laboratories. To do this, we firstly prepared polycrystalline
samples of Ba3-xSrxCr2O8 and tested the resulting materials with x-ray diffraction. The pattern
intensities were described by the hexagonal space group R3̄m. The lattice parameters a = b and c
agreed with the values of previous publications [1, 2] for x = {0, 3}, and they were linearly dependent
on the Sr content (x), indicating the successful preparation of the samples. Finally, we measured the
heat capacity and extrapolated the energy gap ∆ by fitting the data with a theoretical model, which
takes into account the lattice, orbital and magnetic contributions.

For Sr3Cr2O8, the fit of the Schottky anomaly leads to the energy 5.42 meV, which is in contrast
with the value obtained by INS (3.5 meV) [3]. Similarly, we measured the energy gap for Ba3Cr2O8

leading to a value of 2.38 meV, while a high-field magnetisation measurement reported 1.4 meV [4].
Our results show that the value of the energy obtained from heat capacity measurements do not
correspond to the energy gap between the singlet and triplet state. This discrepancy is caused by the
inter-dimer interactions that induce a dispersion in the excited state and thus a bandwidth in the
triplet state. While the gap is reduced by the three dimensional interactions, the fitted gap has the
magnitude of the energies in the center of the band. We suppose that a density of states weights the
thermal excitations, such that the excitations have preference for the energies in the center of the band
and not for the lowest available energies. In fact, both results for x = 0 and x = 3 are in agreement
with the center of the excitation spectrum determined by INS [3, 5]. Therefore, we define energy
obtained by fitting the data as the effective gap (∆eff). It corresponds to the spin gap ∆ = J0 only for
isolated dimers (where the energy levels are sharp), and for weakly interacting dimers, we suspect
that it could be identified as the interaction constant, i. e. ∆eff ≈ J0. Effectively, our results are in
agreement with the values of the interaction constants determined by INS, 5.55 meV [3] and 2.38 meV
[6] for Sr3Cr2O8 and Ba3Cr2O8, respectively. However, for intermediated Sr content (x = 1.5 and
x = 2.7), the exchange constants obtained by magnetisation measurements [7] are smaller than the
energies obtained by the heat capacity, especially in the case of Ba1.5Sr1.5Cr2O8.

In conclusion, our results suggest that the heat capacity measurement could be a valid approach
to the estimation of the energy scales of a weakly interacting dimer system. However, this technique
does not allow to determine the energy gap of the spin dimer system. Anyway, further experiments
are needed to prove the reliability of the results for intermediated steps of Sr content.
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1 Introduction

Bose-Einstein condensation (BEC) is one of the most interesting exotic states of matter studied by
condensed matter physics. At very low temperatures, the bosons of a system condense into a collective
ground state, causing macroscopic effects, such as superfluidity in 4He. Besides cooled atomic gases [8], a
BEC related quantum phase transition was observed also in dimerized (i.e. with paired spins) spin-1/2
systems [9]. Such a system has two energy levels separated by an energy gap ∆: a non-magnetic singlet
ground state (S = 0, where S is the total spin) and a threefold degenerated triplet state (S = 1). Because
of the integer spin, the excitations can be described like a bosonic quasi-particles called triplons. At
the temperature of 0 K, the dimers are in the ground state and the density of the triplons is zero. By
applying an external magnetic field H, the degeneracy of the excited state is removed (Zeeman effect),
reducing the energy gap between the ground and the first excited state (Sz = −1, where z ‖ H). At the
critical field Hc, the lower branch of the triplet state merges with the ground state, becoming energetic
favourable, and leading to triplon condensation. Since the triplons are weakly interacting, they do not
suddenly condense altogether. In fact, their density can be controlled by the strength of the magnetic field
H > Hc, until saturation is reached [10]. The phenomenon of BEC was experimentally confirmed in the
magnetic insulator TlCuCl3 in 2000 [9], and recently, this quantum phase transition was observed also
in Ba3Cr2O8 [11] and Sr3Cr2O8 [12]. The last two compounds are isostructural, exhibiting a hexagonal
crystalline structure with space group R3̄m (Figure 1) [1, 2]. In these compounds, the Cr ions are in
the rare oxidation state 5+, enclosed in an oxygen tetrahedron. The 3d orbital is occupied by a single
electron, thus the Cr5+ ions carry the spin s = 1/2. The Cr ions interact antiferromagnetically with
adjacent Cr ions along the c axis and form a hexagonal lattice of dimers (black ellypse in Figure 1) in an
ABCABC arrangement [6]. The interactions are characterized by a dominant intra-dimer interaction
constant J0. For an isolated dimer, the spin gap is identical to J0, whereas the inter-dimer interactions
cause a dispersive excited state [6, 3], reducing the gap.

Figure 1: Crystal structure of Sr3/Ba3Cr2O8. The Sr/Ba, Cr and O ions are represented by yellow, green
and red spheres, respectively. The oxygen tetrahedrons with Cr5+ ions in the middle are highlighted. A
dimer is marked with a black ellipse. The picture was edited with the program VESTA.

A useful technique used to study the magnetic excitations is the inelastic neutron scattering (INS).
However, this is a complicated technique and requires the preparation of relatively large amounts of single
crystal, which is not always possible. Since in the thermal processes, such as the spin dimer excitations,
the first populated excited levels are the lowest possible, we supposed that the heat capacity could be a
valid alternative to INS in the estimation of the energy gap ∆. In fact, the excitation of the spin dimers
appears like a Schottky anomaly in the heat capacity, which can be fitted by a well known theoretical
model, leading to the spin gap.

In order to verify our hypothesis, we prepared polycrystalline samples. There are several preparation
methods, using the solid state reactions in air [13, 12] or flowing Argon [3, 14, 1], which differ to each
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other in the time and temperature of the heating procedure as well as in the cooling down. We opted for
a solid state reaction in air as reported in Chapter 3.1. The resulting materials were analysed with x-ray
powder diffraction. We performed x-ray powder diffraction to assess the result of our preparation method.
As expected, the intensity pattern of all samples was well fitted by the hexagonal space group R3̄m. The
lattice parameters (a = b and c) of Sr3Cr2O8 and Ba3Cr2O8 were compared with previous publications
[1, 2], which reported similar values. For intermediate Sr contents x, we verified the linear dependence of
the cell parameters on the percentage of strontium (Vegard’s law). Afterwords we performed heat capacity
measurements and fitted the data with a theoretical model, taking into account the phonon contribution,
the electron orbital contribution, and the magnetic (or spin) contribution. In contrast to the expectation,
the fit of the Schottky anomaly (due to the excitation of the spin dimers) shows that the fitted energy is
not comparable with the energy gap. Therefore, we define the effective energy gap ∆eff that is the energy
obtained by fitting the Schottky anomaly. This quantity can be interpreted as a weighted mean value of
the energies available in the excited band and it could be closely related to the exchange constant J0.

The thesis is structured as follows. In Chapter 2, we explain the basic principles of the heat capacity: its
definition and the factors that affect it (lattice, orbital and magnetic contributions). In Chapter 3, we
report the preparation method of the samples and the equipment involved in the measurement of the
x-ray diffraction (XRD) pattern and the heat capacity. The results are presented in Chapter 4, where we
discuss the fitting procedure of the molar heat capacity and briefly show the magnetic dependence of ∆C.
The conclusions of this work are reported in Chapter 5.
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2 Physical Principle

2.1 Concepts of Thermodynamics

The first law of thermodynamics describes the principle of energy conservation in thermodynamic systems,
which takes into account the heat as a form of energy [15]. For an isolated system, this law can be written
as

dU = δQ+ δW, (1)

where U denotes the internal energy, while Q and W represent respectively the quantity of heat and
the work supplied to the system. The heat capacity is defined as the ratio between added heat and the
variation of the system’s temperature

Cx =
∂Q

∂T

∣∣∣∣
x

, (2)

where x is a state variable that is kept constant when the temperature is varied. Defining the work as
W = −pdV , it follows that the term δW in (1) disappears for constant volumes. As a result, the heat
capacity can be defined as

CV =
∂U

∂T

∣∣∣∣
V

. (3)

Commonly, the heat capacity of solids is measured at a constant pressure (Cp). From equation (1), the
relation Cp > CV can be derived. However, the difference between CP and CV is really small at room
temperatures and is negligible at cryogenic temperatures [16]. Therefore, the definition (3) is usually used
to described the experimental data.

The heat capacity is an extensive property, i. e. it depends on the size of the system. On the contrary, the
specific heat capacity c = Cx/m (m is the mass of the sample) and the molar heat capacity Cmol

x = Cx/n
(n is the numbers of moles) are intensive properties. In this work, we analyse the molar heat capacity,
which we denote as C to make it easily legible.

2.2 Analysis of Heat Capacity Data

When heat is added to a system, a part of this energy is used to activate thermal processes, such as lattice
vibrations, electron excitations into conduction bands (in conductors and semi-conductors), the excitation
of magnons (ferri-, ferro- and antiferro-magnetic materials), etc. The changes in the heat capacity are
attributed to those thermal phenomena and the total heat capacity is the sum of the single contributions
∆C [16]

Ctot =
∑
i

∆Ci. (4)

In the specific case of the antiferromagnetic insulator Ba3-xSrxCr2O8, which we studied, three factors
contribute to its heat capacity

C = Clatt + Cmag + Coo. (5)

Clatt is the lattice contribution due to the vibration modes of the ions, Cmag is the magnetic contribution
caused by the spin excitation of the spin-dimers Cr5+-Cr5+ (triplons), and Coo is attributed to orbital
degrees of freedom of the electron in the 3d1 orbital of the Cr5+ ions (Chapter 2.4) [17, 18].

2.3 Lattice Heat Capacity

The thermal energy of the crystals is the energy stored in form of ionic thermal motions around their
equilibrium positions (lattice vibrations). According to the classical theory, the lattice heat capacity
is expressed by the Dulong-Petit law, which states C = 3R , where R is the universal gas constant
(R = 8.314 J

Kmol ). This is consistent with the experimental data for most of the crystals as long as
one is just interested in the heat capacity around room temperatures [16]. However, for temperatures
approaching 0 K, the measurements show that the heat capacity converges to zero. Given this background,
a quantum mechanical approach to the vibration modes is needed in order to describe the discrepancy
between the theoretical value and the experimental behaviour of the heat capacity.
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2.3.1 The Einstein Model

Einstein considered a system of independent oscillators with frequency νE, where only the energy states
εn = nhνE are available [19]. The partition function of such system is given by

Z =

∞∑
n=0

e−βnhνE =
1

1− e−βhνE
, (6)

where β = 1/kBT and kB is the Boltzmann constant (kB = 8.617× 10−5 eV
K ). The relation 〈ε〉 = − d

dβ ln(Z)
leads to the mean energy of the vibrational modes

〈ε〉 =
hν

eβhνE − 1
. (7)

Assuming N to be the number of atoms in a crystal and three degrees of freedom for each vibration’s
mode, the internal energy is given by

U = 3N 〈ε〉 = 3N
hν

eβhνE − 1
, (8)

and the definition (3) leads to the molar heat capacity

CE = 3R

(
ΘE

T

)2
e

ΘE
T(

e
ΘE
T − 1

)2 , (9)

where ΘE = hνE/kB is the Einstein Temperature.

Because Einstein’s model assumes a single frequency, excluding the low frequency modes, the heat capacity
rapidly decreases in the T → 0 limit. In fact, whereas the experimental data show a polynomial decrease
of T 3, the Einstein’s model converges asymptotically with 1

T 2 e
−1/T (Figure 2).

Figure 2: The Debye and Einstein models of the lattice heat capacity.

2.3.2 The Debye Model

To avoid the problems of Einstein’s model, Debye proposed another model for the heat capacity [20]. This
model takes into account elastic waves with linear dispersion relation ω = vk, where v is the propagation
velocity and k is the wave vector [19]. The number of possible modes is fixed by the maximal value of 3N ,
where N is the number of atoms and the factor 3 describes the three acoustic modes (two transversal and
one longitudinal). This leads to a maximal frequency: the Debye frequency ωD.

The internal energy is given by the following sum

U =

3∑
i=1

∑
k

hωi(k)

eβhωi(k) − 1
. (10)
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With the assumption of a continuum of states k, the sum over all wave vectors can be modified into an
integral over the frequencies ω. The integration is weighted by a density of states D(ω) (the number of
states in the interval [ω, ω + dω]). In k-space, there is exactly one state in the volume (2π)3/V (V is the
volume of the sample). The number of states with wave vector smaller than k is given by

Nk =
V

(2π)3

4πk3

3︸ ︷︷ ︸
volume of a sphere

with radius k

. (11)

The definition D(ω) = dNk
dω together with the dispersion relation ω = vk leads to

D(ω) =
V ω2

2π2v3
. (12)

The sum over the three acoustic modes can be substituted by the definition of the mean propagation
velocity [21]

1

vs
=

1

3

3∑
i=1

∫
dΩ

4π

1

v3
i

. (13)

The internal energy can be integrated according to the equation

U =

ωD∫
0

dω

(
V ω2

2π2v3
s

)(
~ω

eβ~ω − 1

)
. (14)

The derivative of the energy with respect to the temperature leads to the heat capacity

CD = 9R

(
T

ΘD

)3
ΘD/T∫
0

dx
x4ex

(ex − 1)2
, (15)

where x = ~ω
kBT

, and ΘD = ~ωD

kB
is the Debye temperature [20].

At high temperatures, Equation (15) converges to the Dulong-Petit law. At low temperatures, the integral
gives the result of π4/15. Consequently, CD is proportional to T 3, in agreement with the experimental
data. In contrast to the predictions, the Debye temperature of solids is not constant, but varies depending
on the temperature. This incongruity may be a consequence of the assumptions of the model [16]. In
Figure 2, the behaviour of the Debye and Einstein models are compared.

2.3.3 The Lattice Contribution in the Ba3-xSrxCr2O8 Solid Solution

According to the publications of Wang et al [17, 18], the lattice contribution to the specific heat of Sr3Cr2O8

and Ba3Cr2O8 can be modelled as the sum of one Debye D (Equation 15) and four Einstein E1, E2, E3, E4

terms (Equation 9). The elements of this sum have the ratio D : E1 : E2 : E3 : E4 = 1 : 3 : 4 : 3 : 2, for a
total of 39 degrees of freedom per formula unit. The characteristic temperatures (Table 1) were modelled
to fit the experimental data and were compared to the IR active phonons spectrum.

ΘD ΘE1 ΘE2 ΘE3 ΘE4

Sr3Cr2O8 135.5 153.4 306.2 541.6 1360
Ba3Cr2O8 123 137 265 658 1270

Table 1: Temperatures of the lattice model used to describe the phonon contribution to the specific heat
of Sr3Cr2O8 and Ba3Cr2O8. All temperatures are given in Kelvin [K].

In order to study the magnetic contribution to the heat capacity of Ba3-xSrxCr2O8, the lattice contribution
has to be subtracted from the heat capacity. Starting from the model of Wang et al., we used an
interpolation method suggested by Prof. Dr. Schilling [22] (details in Appendix) to model the theoretical
curve of the heat capacity for different Sr content x. The interpolation based on the mass and unit cell
volume dependence of the Debye (or Einstein) temperature

TB = TA

√
MAVA
MBVB

, (16)
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where A and B are two isostructural compounds with similar chemical properties. From this scale factor,
it follows

Cx(T ) = εxCx=3(T ) + (1− εx)Cx=0(T ), (17)

where

εx =
(MxVx)−1/2 − (Mx=3Vx=3)−1/2

(Mx=0Vx=0)−1/2 − (Mx=3Vx=3)−1/2
. (18)

In the last equation, Mx and Vx are respectively the molar mass and unit cell volume (obtained by XRD)
of Ba3-xSrxCr2O8. We compared this method with the Kopp-Neumann (KN) law [16], which states

Cx =
3− x

3
Cx=0 +

x

3
Cx=3. (19)

The two method are essentially equivalent, since their difference is about 1 % for x = 1.5 (calculated for
the Debye term) and even smaller for the other x values. The advantage of the KN law is that one does
not need to perform XRD to obtain the unit cell volume.

The theoretical curves modelled by Wang et al. described only approximatively our data. Consequently,
also the curves obtained with the interpolation did not match well to the data. Therefore, we fitted the
lattice contribution

Clatt = D + 3 · E1 + 4 · E2 + 3 · E3 + 2 · E4. (20)

For each term, there is one free parameter (Debye or Einstein temperature). These characteristic
temperatures are not well separated in the temperature scale, consequently, they are correlated to each
other, especially the Debye D and Einstein E1. For this reason, we choose carefully the start parameters,
using the temperatures obtained by Wang et al. for the parent compounds, and using Equation (16) for
the intermediate Sr content x. For some compounds, both the fit and the interpolated curve describe well
the data at high temperatures, while to obtain a good fit of the magnetic contribution, the characteristic
temperatures needed to be refined. Therefore, we discuss in the conclusion only the results obtained by
the fit of the experimental data.

2.4 Schottky Anomaly

The heat capacity contribution due to thermal excitations in a multilevel system is called Schottky anomaly.
Ordinarily, it is observed at very low temperatures, where other contributions are small. For a n-level
system with energies εi (0 ≤ i ≤ n), the partition function is given by

Z =

n∑
i=0

gie
−βεi , (21)

where gi is the degeneracy of the i-th energy level [16]. For simplicity, the energy of the ground state is
set to ε0 = 0, and the energy εi is the difference between the ground state and the i-th excited state. The
mean energy is obtained from the equation 〈E〉 = − d

dβ lnZ,

〈E〉 =
1

Z

n∑
i=0

giεie
−βεi , (22)

and the resulting molar heat capacity is given by

CSch(T ) = Rβ2
(
〈E2〉 − 〈E〉2

)
, (23)

where 〈E2〉 = Z−1
∑n
i=0 giε

2
i e
−βεi .

2.4.1 The Schottky Anomaly of a Spin Quantum Dimer

Upon spin coupling, a spin dimer is formed, as in the case of two adjacent Cr ions in the Ba3-xSrxCr2O8

compound. Assuming s1,2 and J0 to be respectively the spins of the ions and the interaction constant,
the Hamiltonian of the isolated dimer is given by

Ĥ =
J0

~2
~s1 · ~s2 =

J0

2~2
(~S2 − ~s1

2 − ~s2
2) =

J0

2~2
[S(S + 1)− 2s(s+ 1)] , (24)
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where S is the total spin of the system and s = 1/2 [23]. The total spin quantum numbers are S = 0 (|0, 0〉)
for the singlet ground state and S = 1 ({|1, 1〉 , |1, 0〉 , |1,−1〉}) for the triplet excited states.1 Applying
the Hamilton operator on the eigenstates, one gets the eigenvalues of the energy states, which are −3/4J0

and 1/4J0, for the ground and the excited states, respectively. Thus, the energy levels are separated by an
energy gap ∆ = J0 (Figure 3).

Figure 3: Energy states of an isolated spin-1/2 dimer system (left) and a weakly interacting spin dimer
system (right). In the first case, the ground state is separated from the threefold excited state by an
energy gap ∆ = J0. The threefold degeneracy of the excited state is removed by an external magnetic
field H (Zeeman effect). In the second case, the excited state is a threefold degenerated band. The energy
gap is reduced (∆ < J0) due to the inter-dimer interactions.

The Schottky anomaly of this system can be derived from Equation (23), using the partition function
Z = 1 + 3e−β∆. The resulting molar heat capacity is

Cmag = ndR(β∆)2 3e−β∆

(1 + 3e−β∆)2
, (25)

where nd represents the fraction of dimerized Cr+5 ions (0 < nd < 1). Since the peak height of the
Schottky anomaly is related to the number of dimers in the sample, a smaller peak indicates that a certain
percentage of chromium ions are not dimerized, consequently nd < 1. This factor was firstly introduced
by Grundmann in the fit of his magnetisation measurements [7]. The model used to fit the experimental
data consists of the sum of a Bleaney-Bowers term (Md) and a Brillouin term (Mp). The first term
describes the magnetisation of the dimers, thus it is multiplied by the factor nd. While the second term
describes the paramagnetic background and is multiplied by another factor np, where np is the fraction of
free Cr ions. Grundmann found out that the paramagnetic component becomes more relevant for the Sr
content x around 1.3 (Figure 4). Our heat capacity measurement are in agreement with the results of the
magnetisation measurements. Indeed, the Schottky anomaly of Ba1.5Sr1.5Cr2O8 was notably smaller than
for the other Sr content.

Figure 4: Estimated fraction of dimerized nd (blue crosses) and free np (red plus symbols) Cr5+ ions from
a magnetisation measurement as a function of the Sr content x. The sum of these fractions is represented
by the green asterisks. (Figure retrieved from Ref. [7])

On the contrary, the position of the maximum is not affected by the number of dimerized ions. In fact, it
is determined only by the magnitude of the energy gap ∆, thus it provides a first estimation of the spin

1The notation used to describe the spin states is |s,m〉, where s indicate the spin quantum number and m the magnetic
quantum number.
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gap. Using the necessary condition of a maximum dC
dT = 0 in Equation (25), one gets the equation

2(1 + 3e−x) + x(3e−x − 1) = 0, (26)

where x = β∆. The numerical solution of this equation leads to the factor x ≈ 2.845. The temperature,
for which the heat capacity reaches the maximal value, increases linearly with the magnitude of the
interaction constant and is given by

Tmax =
∆

kBx
≈ 4.079 ·∆[meV]. (27)

By applying an external magnetic field H, the degeneracy of the triplet state is removed (Zeeman effect)
[7] (Figure 3). Because the energy of the ground state is not affected by the magnetic field (i. e. ε0 = 0),
the energies of the excited state are given by

ε1,2,3 = ∆ +mgµBH, (28)

where m = {1, 0,−1}, g is the Landé-factor and µB is the Bohr magneton. The Schottky anomaly is given
by Equation (23), using the partition function

Z =

3∑
i=0

e−βεi . (29)

Figure 5 shows the theoretical curve Cmag/T as a function of the temperature for different magnetic fields.
The increase of the Schottky anomaly starts at lower temperatures for higher magnetic fields, because
the excited state with magnetic quantum number m = −1 gets closer to the ground state (Figure 5). In
addition, the peak height decreases and the position of the maximum shift to lower temperatures.

Figure 5: Theoretical heat capacity Cmag/T of an isolated spin-dimer system as a function of the
temperature T for various magnetic fields. The energy gap used in the picture is ∆ = 5.26 meV and
corresponds to the estimated gap of Ba0.1Sr2.9Cr2O8.

Actually, the dimers are not isolated but rather interact with adjacent dimers. Consequently, the excited
state is dispersive and has a finite bandwidth [6, 3] (Figure 3). To investigate how the triplon dispersion
affects the Schottky anomaly, we introduced a density of states (DOS) D(ε). We approximated the density
of states by a Gaussian distribution, with center at µ(J0,m,H) = J0 +mgµBH and standard deviation
σ = δ

6 , where δ is the bandwidth (to count 99.7 % of the states within the bandwidth)

D(ε,H) =
1√

2πσ2
e−

(ε−J0+mgµBH)2

2σ2 . (30)

With this definition, we modified the partition function to

Z = 1 +

1∑
m=−1

∞∫
0

dεD(ε,H)e−βε, (31)
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and the mean energy to

〈E〉 =
1

Z

1∑
m=−1

∞∫
0

dεD(ε,H) ε e−βε. (32)

Finally, we obtained the Schottky anomaly by inserting (32) in Equation (25) and then performing a
numerical integration.

As an example, we plotted the theoretical Schottky anomaly with and without DOS for Sr3Cr2O8

(Figure 6). For the Gaussian DOS, we used the parameters J0 = 5.55 meV and δ = 3.5 meV determined
by INS [3]. The original curve was evaluated with ∆ = J0 (isolated dimers). Surprisingly, the curves are
very similar to each other. The difference between them is maximal in the region of the maximum (2 %),
and their maxima are only slightly shifted to each other. We compared our approximation with a more
realistic DOS that is determined from a random phase approximation model for Sr3Cr2O8 [24] (Figure 7).
Nevertheless, also in this case the curves are very similar. Thus we decided not to consider the dispersion
in our fits. This result suggests also that we do not obtain the energy gap ∆ by fitting the experimental
data. Therefore, we introduced a new quantity: the effective energy gap (∆eff). For sharp energy levels, it
corresponds to the exchange constant, while for dispersive excitations ∆ < ∆eff < J0. Nevertheless, it
may be a good approximation of J0 in weakly interacting dimer systems (inset in Figure 6). The effective
energy gap in the inset was obtained by setting Tmax = 22.3 K (obtained from the green dashed line) in
Equation (27).

Figure 6: Schottky anomaly of the spin dimer system Sr3Cr2O8 with both sharp (blue solid line) and
dispersive excited state (red and green dashed line). For the Gaussian DOS, we used the exchange constant
(J0 = 5.55 meV) and the bandwidth (δ = 3.5 meV) [3]. The green curve was obtained with the density of
states in Figure 7. In the inset, the DOS of the red curve is shown and the relevant quantity are marked.
The green line in the inset indicates the effective gap for the Schottky anomaly with the DOS from Ref.
[24], ∆eff = 5.47 meV.

2.4.2 Orbital Contribution to the Heat Capacity

Another example of Schottky anomaly is the orbital contribution to the heat capacity. In the compounds
Ba3Cr2O8 and Sr3Cr2O8, the magnetic ions have a single electron in the fivefold degenerated 3d orbital.
The tetrahedron crystal field splits the orbital into a higher lying threefold degenerated T2 and a lower
lying twofold degenerated E orbitals [25] (Figure 8). The last is formed by the 3z2 − r2 and x2 − y2

orbitals. At the temperature TJT, a Jahn-Teller transition occurs, changing the symmetry of the crystal
from hexagonal into monoclinic with space group C2/c [13, 6]. During the structural transition, the E
orbital splits and the energy of 3r2 − z2 decreases [13]. Consequently, the ground state (3r2 − z2) is
separated from a non-degenerated excited state (x2 − y2) by an energy gap ∆oo. The thermal excitations
cause a Schottky-like peak in the heat capacity, which is described by the function

Coo = 2R(β∆oo)2 e−β∆oo

(1 + e−β∆oo)2
, (33)
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Figure 7: Density of state of Sr3Cr2O8 as a function of the energy in the zero temperature limit. It is
determined from a random phase approximation model [3]. The vertical line indicate the magnitude of the
exchange constant J0 = 5.55 meV. Figure retrieved from Ref. [24]. The inset shows the dimer structure.

where the factor 2 arises from the number of Cr5+ ions per formula unit.

For temperatures higher than the transition temperature, the two orbitals have the same energy and no
contribution to the heat capacity is observed. The transition temperature of Sr3Cr2O8 was determined
by powder neutron diffraction by Chapon et al. [13]. They observed several superlattice reflections for
temperatures lower than TJT = 275 K, indicating a structural transition. A heat capacity measurement
done by Wang et al. [17] shows a phase transition at TJT = 285 K, which they associated to the Jahn-Teller
distortion. Kofu et al. determined by neutron diffraction that the transition temperature of Ba3Cr2O8 is
TJT = 70 K [6]. This result was confirmed by Wang et al. [18] by a heat capacity measurement.

Figure 8: The 3d1 orbital of a Cr5+ ion. The degeneracy of the orbital is lifted by the tetragonal crystal
field Td, leading to the orbital triplet T2 and doublet E states. The remaining degeneracies are lifted
depending on the symmetry of the crystal structure. Figure retrieved from Ref. [25].

The orbital gap ∆oo of Ba3-xSrxCr2O8 is unknown, except for x = 3. Wang et al. [17] performed electron
spin resonance (ESR) and estimated the energy gap to be ∆oo(x = 3) = 33.4 meV. For the other value of
x, we did the rough assumption ∆oo ∝ TJT, and used ∆oo(3) to derive the orbital gap for the other x
using the equation

∆oo(x) =
TJT(x)

TJT(3)
·∆oo(3). (34)

This value was then used as start parameter in our fit. The Jahn-Teller temperatures were determined by
heat capacity (HC) measurements for x = {2.7, 2.8, 2.9, 3} [26], and by neutron diffraction (ND) for
x = {2.2, 2.8} [27] (Figure 9). Moreover, values for x = 0 and x = 3 are known from previous publications
[17, 18, 13, 6]. Unfortunately, the transition temperature for x = 1.5 was unknown. Therefore, we
interpolated this temperature as follows. The transition temperature is not linear dependent on x, so we
fitted the data in Figure 9 with two quadratic functions: one for the HC and one for the ND measurements.
As start parameter for our fit, we chose the value obtained by interpolation between the value determined
by HC measurements. At the end of the fitting procedure, we calculated back the Jahn-Teller temperature
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using Equation (34). We retained the result as plausible, if the value of the Jahn-Teller temperature was
in the yellow area (Figure 9). In order to verify the reliability of this method, we calculated the transition
temperature for x = 2.7 from the result of the fit and compared this value with the experimental value of
TJT, which are in good agreement.

Figure 9: The Jahn-Teller transition temperature TJT as a function of the Sr content x. The data points
represented by red markers were measured by neutron diffraction (ND) [27, 13, 6], while the blue markers
represent heat capacity (HC) measurements [26, 17, 18]. The blue and red dashed lines are two fits
that may predict the behaviour of TJT for different values of x. The yellow area delimit the region
of believability for the transition temperature. The green circle are the temperatures obtained with
Equation (34), using the result of the fits (∆oo).
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3 Experimental Techniques

3.1 Sample Preparation

The samples of Ba3-xSrxCr2O8 (for x = {0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.7, 3}) were prepared at the University
of Zurich using BaCO3, SrCO3 and CrO3 as reactants. The solid reaction

(3− x)BaCO3 + xSrCO3 + CrO3 + O2 −→ Ba3−xSrxCr2O8 + 3CO2 (35)

occurred in a high temperature furnace. The reactants were mixed, pressed and heated at 1250 ◦C for
24 h. The reaction was then quenched with liquid nitrogen. The resulting material was grounded, pressed
and then heated again under the same conditions. The last procedure was repeated three times. Two
compounds (x = 0 and x = 0.3) were melted and stuck together with the Al2O3 sample holder. Therefore,
we chose a lower temperature (1000 ◦C) for the last step of the preparation. The samples were dark grey.
Some samples showed dark green color shades in the internal part. A similar result was obtained by H.
Grundmann [7]. The consistency of the pills was hard at the beginning, but some samples became friable
(or powdery) after a while. We were not able to explain this phenomenon, since the x-ray diffraction
analysis did not show significant changes in the crystal structure. Because of time restriction, we used
only the samples x = {0, 1.5, 2.7, 3} for the heat capacity measurements.

Afterwards, we performed further heat capacity measurements of polycrystalline samples of Sr3Cr2O8 and
Ba3Cr2O8 prepared by H. Grundmann. In particular, we wanted to compare the data quality of the two
different preparation methods. The samples were grown with an optical floating zone method to obtain
single crystals (details about the procedure are reported in his doctoral dissertation [7]). However, they
turned out to be high quality polycrystalline samples.

In this thesis, the magnetic dependence of the Schottky anomaly of Ba0.1Sr2.9Cr2O8 was analysed as well.
The sample, which was a single crystal, had been prepared by A. Gazizulina [26]. The powder preparation
is similar to the first method explained in this chapter, and the single crystal growth was performed in
the Crystal Laboratory at the Helmholtz Zentrum Berlin für Materialien und Energie (HZB), Germany,
using a high temperature optical floating zone furnace (FZ-T-10000-H-VI-VPO).

3.2 X-Ray Powder Diffraction

In order to verify the purity and to determine the lattice parameters of Ba3-xSrxCr2O8, a small amount
of the samples were used for XRD measurements. Powder x-ray diffraction data were collected using the
Stoe IPDS at the University of Zurich equipped with monochromatic CuKα radiation (λ = 1.5406 Å).
The step size of the angle was set to 0.015◦ and the measurements were performed over the 2Θ range
5◦-95◦. The time of radiation was set to 150 seconds. The Stoe IPDS operates in transmission mode
(Figure 10). The sample was grounded and distributed between two Scotch tapes. The sample holder
was rotated during the measurement to avoid secondary effects due to inhomogeneous distribution of
the powder. This XRD diffractometer provides good accuracy of the peak positions [7]. Consequently,
the lattice parameters can be estimated with high precision. However, the x-ray photons are subject to
inelastic scattering and absorption when they pass through the plastic layers and the sample powder, as
reported by Grundmann [7]. These effects reduce the precision of the atomic coordinate determination.

Figure 10: Sketch of the transmission mode (Debye-Scherrer diffraction geometry).

3.3 Relaxation Calorimetry

The relaxation calorimetry is one of the various techniques for the measurement of the heat capacity. This
procedure is based on the evaluation of the relaxation time constant (τ), which describes the time needed
for a system A to decrease its temperature by a factor e (natural number) when it is in thermal contact

12



with a system B (TA > TB). More specifically, the sample and the platform are initially in thermal
equilibrium with a thermal bath (temperature TTb). A heating device applies a constant power P0 to the
platform, increasing its temperature and the temperature of the sample by ∆T . Then the device is turned
off and the sample’s temperature TS(t) decreases exponentially, going back to the thermal equilibrium
with the thermal bath. The relaxation time τ is fitted and the heat capacity is calculated according to
the equation

C = κτ, (36)

where κ is the thermal conductance of the thin wires that connect the platform to the thermal bath
[28]. Assuming a good conductance between the sample and the platform, the time progression of the
temperature can be approximated by

TS(t)− TTb = ∆T · e−tκ/(CS+CSH) = ∆T · e−t/τ , (37)

where CS and CSH are the heat capacity of the sample (S) and sample holder (SH) respectively. The
temperature difference ∆T must be small, so that τ can be considered as a constant. Figure 11 shows the
sample temperature as a function of the time. The temperature of the thermal bath is then varied in
order to collect a set of data points

C(T ) = CS + CSH . (38)

A measurement cycle of the heat capacity consists of two parts: an addenda measurement and a sample
measurement. In the first part, the heat capacity of the sample holder CSH is measured. In the second
part, the total heat capacity CS + CSH is measured, and the addenda measurement is subtracted from it,
giving the sample’s heat capacity CS .

Figure 11: Time progression of the sample temperature. Initially, the temperature is increased by a
constant supply of heat. Then the heater is turned off and the temperature decreases exponentially.

The heat capacity measurements were performed at the University of Zurich using a Physical Property
Measurement System (Quantum Design). The PPMS is a relaxation calorimetry and measures the heat
capacity at constant pressure

CP =
∂Q

∂T

∣∣∣∣
P

. (39)

According to the user’s manual [29], in a fixed time interval a heater positioned under the sample
platform applies a known amount of heat while a thermometer monitors the temperature (Figure 12).
The temperature decrease is fitted taking into account also the thermal resistance between the sample
and the holder. The temperature relaxation is then described by two time constants, τ1 and τ2, leading to
precise results also in the case of bad conduction between the sample and the holder.
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Figure 12: Thermal connections between the sample and sample platform in the PPMS heat capacity
option. Picture retrieved from the PPMS Heat Capacity Option Users’s Manual.
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4 Measurements

4.1 X-Ray Measurements

In order to verify the results of the sample preparation, we performed several XRD experiments. The
intensity peak positions are affected by the values of the lattice parameters (a = b and c), consequently
they are shifted for different Sr content x. For each sample, one peak of the intensity pattern was fitted
with a Pseudo-Voigt function, obtaining a qualitative representation of this effect (Figure 13).

Figure 13: Normalized intensity peaks (0,1,5) fitted from XRD data as a function of the 2Θ angle. The
peaks shift to the right with increasing Sr content (x).

The x-ray data were analysed using the Rietveld method in FullProf. All intensity peaks were described
by the hexagonal space group R3̄m (Figures 32, 36, 39, 42, in Appendix). Because of the poor sensitivity
of the XRD pattern on the atom’s coordinates (particularly for the oxygen atoms), we extrapolated only
the lattice parameters from the fit of the intensity pattern, without considering the atomic coordinates.
We represented the lattice parameters as a function of the Sr content x and proved the linear dependence
predicted by the Vegard’s law (Figure 14). The lattice parameters are very similar to the results of a
neutron diffraction experiment that was performed on similar samples [7]. Based on these results, we
assessed that our samples were adequate for further analyses. Next, we performed the heat capacity
measurements.

4.2 Heat Capacity Measurement

4.2.1 Molar Heat Capacity of Sr3Cr2O8

We measured the heat capacity of both the polycrystalline sample prepared at the University of Zurich
(mass: 8.0 mg , we refer to this sample using the letter (M)) and the sample prepared by Grundmann
(mass: 5.9 mg, we refer to this sample using the letter (G)). Plotting CM − CG on a logarithmic scale
(Figure 33, in Appendix), we observe a constant difference (0.0467) between the experimental data in
the temperature range 40 − 150 K. Therefore, we divided the data (M) by the factor e0.0467 = 1.048
to obtain a better match between the data. This factor can arise from an inaccurate measurement of
the mass, or, as in the case of x = 0, from a small loss of material when the sample was placed on
the sample holder, since the sample was powdery and fragile. The two sets of data coincide over the
full range of temperatures, except below 7 K. Here, the sample (M) exhibits a larger contribution to
the heat capacity than the sample (G) (Figure 34, in Appendix). We attributed this contribution to
the impurities of the sample, which are more abundant in the sample (M) than in (G), because of the
preparation method. The theoretical curve for this compound was proposed by Wang et al. [17]. It takes
into account the three components mentioned in Chapter 2.2: lattice, orbital and magnetic contributions.
The model matches well to the data at low temperatures, while it slightly deviates from the data at
high temperatures (differences of about 2− 5 %). For the magnetic contribution, we used the function
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Figure 14: Lattice parameters of Ba3-xSrxCr2O8 as a function of the Sr content x (dots) estimated by
XRD. A comparison between our results and the values obtained from neutron diffraction experiments [7]
(black crosses) and from XRD [1, 2] (red squares) is shown.

defined by Equation (25), while at the origin, Wang et al. used a function that describes a three-level
system. They performed ESR to estimate the singlet-triplet excitations (5.13 meV and 6.08 meV) and
used these energies (with degeneracy g1 = 2 and g2 = 1) for the theoretical curve. However, the result is
very similar to the Schottky anomaly obtained using J0 = 5.55 meV (determined by INS [3]) as an energy
gap (Figure 35, in Appendix), and both describe almost well the experimental data. Nevertheless, both
the lattice and magnetic contributions needed to be slightly adapted, so we fitted the data (Figure 15).
The resulting characteristic temperatures for both samples are similar to the original model. Only the
Einstein temperature E3 is markedly changed, but this factor cannot affects the shape of the Schottky
anomaly. For the sample (G), the effective energy gap is ∆eff = (5.42± 0.05) meV and the fraction of
dimerized ions is nd = 1, as observed by Grundmann in the magnetisation measurement. For the other
sample, Sr3Cr2O8 (M), the gap is ∆eff = (5.50± 0.08) meV and nd = 0.98± 0.02, in good agreement with
the previous result.

Figure 15: Molar heat capacity C of Sr3Cr2O8 (G) as a function of the temperature T (blue dots). The
red solid line represents the best fit. The fit parameters are reported in the legend. The orbital energy
gap was fixed at ∆ = 33.4 meV.
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Figure 16: Molar heat capacity C of Sr3Cr2O8 (M) as a function of the temperature T (green diamonds).
The red solid line represents the best fit. The fit parameters are reported in the legend. The orbital
energy gap was fixed at ∆ = 33.4 meV.

Figure 17 shows the heat capacity (G) after subtraction of the lattice and orbital contributions, and its
best fit. The data show an anomalous tail at low temperatures, which we fitted with Equation (23) for a
two-level system (Cimp). Interestingly, we found an analogous contribution also in the other compounds.
Probably, this contribution is due to impurities. In fact, the residual heat capacity (C − Clatt − Coo) of
Sr3Cr2O8 (M) shows a more prominent tail than the homonym sample (G) (Figure 18). In this case,
the additional contribution was fitted by the sum of two Schottky anomaly, instead of a single function.
The energy gap used in Cimp for Sr3Cr2O8 (G) has similar magnitude as that used to describe Cimp,1 for
(M). It could be that the samples have one common impurity contribution. The factor Ni is larger for
the polycrystalline sample (M), supporting the assumption of the impurities as a cause of the additional
contributions. Indeed, the quality of the sample (G) is expected to be higher than that of (M).

Figure 17: Residual heat capacity (C − Clatt − Coo)/T as a function of the temperature T (blue dots).
The theoretical curve was obtained by the sum of the magnetic and the impurities contributions (the
parameters are reported in the legend).

4.2.2 Molar Heat Capacity of Ba0.3Sr2.7Cr2O8

We measured the molar heat capacity of a Ba0.3Sr2.7Cr2O8 sample with mass 6.9 mg. In a first step,
we compared the data with a theoretical curve, obtained from the interpolation method reported in
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Figure 18: Molar heat capacity C − Clatt − Coo divided by the temperature T as a function of the
temperature (green diamonds). The theoretical curve was obtained by the sum of the spin dimer and two
additional (Cimp) contributions (the parameters are reported in the legend).

Chapter 2.3.3 (Figure 37, in Appendix). This method overestimates the molar heat capacity, in particular
at high temperatures. However, subtracting this theoretical curve, we noted that the Schottky anomaly
had the expected shape, indicating that the model matches well to the data (Figure 38, in Appendix).
From the position of the maximum, we estimated the effective gap ∆eff = 4.85 meV, using Equation (27).

We fitted the data as in the previous case, taking into account the three discussed contributions and two
additional contributions due to impurities. As the starting fit parameters of the lattice model, we used
the values obtained from the interpolation method, Equation (16). For the orbital gap ∆oo, we assumed
∆oo ∝ TJT , as reported in Chapter 2.4.2. The temperature of Jahn-Teller distortion (TJT = 236 K) is
known from measurements of Gazizulina at the University of Zurich. Figure 19 shows the result of the
fit. As expected, the characteristic temperatures D and E1 decrease with increasing mass and unit cell
volume, whereas E2 and E3 increased. We focused our interest on the low temperature range, thus on D
and E1, since the other characteristic temperatures do not affect the Schottky anomaly. The ratio between
the Debye temperatures of x = 3 and x = 2.7 is 0.97, while the ratio between the Einstein temperatures
is 0.98. These results are consistent with the scaling factor in Equation (16). The resulting orbital gap
agrees with the experimental data, as shown in Figure 9. The effective gap is ∆eff = (4.91± 0.06) meV
that is similar to the value estimated before. The factor nd is smaller than in Sr3Cr2O8, suggesting the
presence of a large amount of free Cr5+ ions (i. e. not dimerized ions). This could be related to the
mixing of Ba and Sr ions, since nd is further reduced in x = 1.5.

The residual heat capacity (C − Clatt − Coo) was fitted by the sum of a magnetic and two additional
terms (2-level system) due to impurities (Figure 20). Using the same energy gaps ∆i,1,2 as for Sr3Cr2O8

(M), we obtained a good match to the data.

4.2.3 Molar Heat Capacity of Ba1.5Sr1.5Cr2O8

We measured the molar heat capacity of a Ba1.5Sr1.5Cr2O8 sample (6.8 mg). As for x = 2.7, we compared
the data with the theoretical curve obtained by the interpolation between the known heat capacity of
the parent compounds (Figure 44, in Appendix). At high temperatures, the model well describes the
experimental data. At low temperatures, the Schottky anomaly is markedly reduced, in fact, it appears
like a light deviation from the theoretical model. Analysing the residual heat capacity (Figure 41, in
Appendix), we estimate a reduction of the Schottky anomaly of 40 % from the height of the peak, while
the impurity contributions are much larger than in the other compounds. The fit was performed with the
same method as in the previous cases (Figure 21). The resulting Debye temperature is smaller than that
of x = 3. The ration D(x = 1.5) : D(x = 3) is consistent with the scaling factor in Equation (16). In
contrast with our expectation, E1 increases. We interpret this result as a signal that our assumptions
about the orbital contribution (Chapter 2.4.2) may do not reflect well the real behaviour of the orbital
gap. In fact, reducing the orbital contribution, the temperature E1 decreases. This can be related to a
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Figure 19: Molar heat capacity C of Ba0.3Sr2.7Cr2O8 as a function of the temperature T (green diamonds).
The red solid line represents the best fit. The parameters of the fit are reported in the legend.

Figure 20: Residual heat capacity (C−Clatt−Coo)/T of Ba0.3Sr2.7Cr2O8 as a function of the temperature
T . The theoretical curve (red solid line) is composed by three terms: the magnetic (Cmag) and the
impurity (Cimp1,2) contributions. The single contributions are shown with dashed lines.
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partial suppression of the Jahn-Teller distortion reported by Grundmann et al. [14]. In addition, the
structural transition is not visible in the heat capacity, supporting this hypothesis. The effective energy
gap for this compound is ∆eff = (4.1± 0.1) meV. The uncertainty of the result is larger than compared to
the other gaps, because the contribution of the impurities to the heat capacity is important. The reason
may be related to local disorder due to the mixing of Sr and Ba atoms. The resulting nd agrees with the
fraction reported in a magnetisation measurement [7] (Figure 4).

Figure 21: Molar heat capacity C of Ba1.5Sr1.5Cr2O8 as a function of the temperature T (green diamonds).
The red line represent the fit. The fitting parameters are reported in the legend.

The residual heat capacity (C −Clatt−Coo) appears like a broad peak (Figure 22, inset), which is broader
and smaller than in the other compounds. The data were fitted again by the sum of a magnetic and two
impurity contributions. The energy gaps of the two-level systems were in the same range as for x = 3
and x = 2.7. The result of the fits suggest the presence of two level system common in all compounds
Ba3-xSrxCr2O8 prepared with the same method, namely solid solution reported in Chapter 3.1. In fact,
the impurity contribution to the heat capacity of our samples (denoted with (M) and represented by
green diamonds) can be fitted by two terms, except for x = 0. In contrast, in the samples prepared by
Grundmann (denoted with (G)) this contribution is fitted by a single Schottky anomaly.

Figure 22: Residual heat capacity (C−Clatt−Coo)/T as a function of the temperature T (green diamonds).
The theoretical curve (red solid line) is a sum of magnetic and impurity contributions. The dashed
lines represent the single terms of the model. In the inset, the residual heat capacity C − Clatt − Coo is
represented a s a function of the temperature.
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4.2.4 Molar Heat Capacity of Ba3Cr2O8

As in the case of Sr3Cr2O8, we measured the molar heat capacity of both the samples Ba3Cr2O8 (M)
(mass: 8.1 mg) and Ba3Cr2O8 (G) (mass: 3.2 mg). The heat capacity of the sample (M) was markedly
smaller than that of the sample (G). Because the sample was friable, we suspect that the sample lost
a small amount of material during the displacement from the balance to the sample holder. Therefore,
the experimental data (M) were multiplied by the factor 1.176, which was obtained in the same way as
for Sr3Cr2O8 (Figure 43, in Appendix). We plotted the molar heat capacity of (M) and (G) in the same
graphic to compare the quality of the measurement (Figure 44, in Appendix). Surprisingly, the curves
have slightly different shapes. With regards to the experimental data of Ba3Cr2O8 (G), we observed a
phase transition at the temperature of TJT = (69± 1) K, in agreement with the value reported in previous
publications (70 K) [6, 18]. On the other hand, the heat capacity of Ba3Cr2O8 (M) does not show the
structural transition. The theoretical model in Figure 44 takes into account three contributions: the
lattice term (proposed by Wang et al.), the orbital term (Chapter 2.4.2) and the Schottky anomaly with
∆eff = J0 = 2.38 meV (interaction constant determined by INS [6]). It describes well the data, especially
for low temperatures, while it deviates from the data in the region of the transition temperature TJT.
Comparing the Schottky anomaly of the two samples (Figure 45, in Appendix), we noted that the peaks
have some differences, in particular, the peak heights and positions do not coincide. The sample (G) is
more pronounced and the position of the maximum remind to the gap 2.2 meV, while the sample (M) is
well described by the Schottky anomaly with ∆eff = J0 = 2.38 meV. The difference between the peaks
can be explained by the presence of different amount of impurities. In contrast with the case of x = 3, it
seems that the sample (M) has less impurities than the sample (G).

We fitted the data and obtained two different sets of characteristic temperatures. As expected, the Debye
temperatures of both samples are smaller than that of the other x values, and again, they are compatible
with the scaling factor in Equation (16). In contrast, the Einstein temperatures E1, E2 and E3 are
observably different. The reason of this discrepancy could be the strange oscillations observed in the heat
capacity of Ba3Cr2O8 (M), and of course the different shape of the curves. The non-physical oscillations
are present particularly at high temperatures. Moreover, they have a constant period of 10 K between
80 − 110 K (marked with arrows in Figure 16). We attribute this to some problems in reaching and
maintaining high vacuum in the PPMS. This problem may cause the small change of the shape of the
heat capacity and hide the structural transition.

Figure 23: Experimental data of the molar heat capacity C of Ba3Cr2O8 (G) as a function of the
temperature T (blue dots). The red solid line represents the fit. The fitting parameters are reported in
the legend.

21



Figure 24: Experimental data of the molar heat capacity C of Ba3Cr2O8 (M) as a function of the
temperature T (green diamonds). The red solid line represents the fit. The fitting parameters are reported
in the legend. The arrows indicate the strange oscillation of the heat capacity.

After subtraction of the lattice and orbital contributions, we fitted the residual heat capacity with the
sum of the magnetic (Cmag) and the impurity (Cimp) contributions (Figures 25 and 26). Despite the
visible differences between the two peaks of the residual heat capacity, the magnetic contributions are
very similar (Figures 25, 26). The effective gap is ∆eff = (2.38± 0.05) meV for the sample (G), and
∆eff = (2.42± 0.05) meV for (M). In addition, the fraction of dimerized ions is almost the same for both
samples. The energy gap related to the impurities is in the same range of energies for both samples
(0.8− 0.9 meV). The impurity contribution is larger in the sample (G) than in (M), which is in contrast
with the result for x = 3.

Figure 25: Residual heat capacity (C − Clatt − Coo)/T as a function of the temperature T (blue dots).
The theoretical curves (red solid line) is given by the sum of two contributions: Cmag +Cimp. The dashed
lines represent the single terms of the theoretical model.

4.3 Magnetic Dependence of the Heat Capacity

The theoretical model of the heat capacity is complex and the fitting parameters are sometimes strongly
correlated to each other. This is especially the case for the characteristic temperatures D and E1 with the
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Figure 26: Residual heat capacity (C − Clatt − Coo)/T as a function of the temperature T (blue dots).
The theoretical curves (red solid line) is given by the sum of two contributions: Cmag +Cimp. The dashed
lines represent the single terms of the theoretical model.

energy gap ∆. As a consequence, the subtraction of the lattice contribution could affect the shape and
the position of the magnetic Schottky anomaly. Furthermore, the orbital gap is unknown for intermediate
amounts of Sr (0 < x < 3), making it hard to fit the experimental data without further analyses. All
these problems could be theoretically avoided by performing an additional heat capacity measurement
with an external magnetic field (C(T,H)). The difference ∆C = C(T,H)− C(T,H = 0) corresponds to
∆Cmag, since the lattice and orbital contributions are independent from the magnetic field. So, one needs
to consider a theoretical model that takes into account only the magnetic contribution.

We did not perform such measurements because of time restriction, but we analysed heat capacity data of
x = 2.9, which were measured at the Laboratoire National des Champ Magnétiques Intenses (LNCMI),
Grenoble. The measurements were performed up to the magnetic field H = 19 T. The experimental data
were measured in different temperature ranges and with different steps and we therefore used a spline
interpolation to obtain a function that represents well the data C(T, 0). This function was subtracted from
the data C(T,H) to obtain ∆C (Figure 27). Unfortunately, most of the experimental data were evaluated
in the restricted temperature range 2− 15 K, while we need to consider the range of temperatures 2− 50 K
to observe the entire Schottky anomaly (inset in Figure 28). In this small range of temperatures, the
data show a quasi symmetric peak, which is centred at about 8.5 K and becomes more pronounced for
increasing magnetic field values.

The theoretical curves are given by ∆Cmag = Cmag(T,H) − Cmag(T, 0), where Cmag is given by the
Equation (23) with the energy states ε0,1,2,3 = {0, ∆eff − gµBH, ∆eff, ∆eff + gµBH}. The g-factor
is g = 1.94 for both Sr3Cr2O8 and Ba3Cr2O8, as determined by high field ESR [30]. This value was
confirmed by electron paramagnetic resonance for Sr3Cr2O8 [12], and by other ESR experiments for
Ba3Cr2O8 [32, 31]. The effective gap ∆eff is thus the unique fitting parameter in this model. However, we
realized that the experimental data cannot be fitted using only the gap as free parameter.

In order to compare the experimental data with plausible theoretical curves, we estimated the effective
gap from the residual heat capacity (H = 0) and obtained ∆eff ≈ 5.2 meV. Then, we plotted the result
for all magnetic fields (Figure 28). The curves have a maximum in the range of temperatures 2− 15 K
similar to the experimental data. However, the peak in the theoretical curves are centered at about 9.5 K
and their height is larger than that of the experimental data. In addition, the data get in the negative
plane at low temperatures, indicating that there is another magnetic field dependent component, which
has to be taken into account.

To better understand the discrepancy between experimental data and theoretical model, we fitted the
data (H = 0). This data were collected in the range of temperatures 2− 25 K. Here, the relevant lattice
contributions are the Debye (D) and the Einsten (E1) terms, thus Clatt = D + 3E1. From the fit we
obtained ΘD = (131± 1) K and ΘE1 = (153.7± 0.1) K, in agreement with Equation (16). The orbital
contribution was omitted in the theoretical model, because it is not relevant at low temperatures. The
residual heat capacity (C − Clatt) was fitted by the sum of the magnetic contribution (Cmag) and two
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Figure 27: Difference ∆C = C(T,H)−C(T, 0) of Ba0.1Sr2.9Cr2O8 as a function of the temperature T for
different magnetic fields H.

Figure 28: Theoretical difference ∆Cmag = Cmag(T,H)− Cmag(T, 0) as a function of the temperature T
for different magnetic fields H. In the inset, ∆Cmag is shown in a bigger range of temperatures. The
curves were obtained with the energy gap ∆ = 5.2 meV and g-factor g = 1.94.
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additional terms due to impurities (Figure 29). The effective gap is ∆eff = (5.34± 0.01) meV and the
fraction of dimers is nd = 1.00± 0.01. The fit shows that the impurities contribute to the heat capacity
even for temperatures higher than 20 K. Comparing the theoretical curves with the experimental data
for H > 0 (Figures 46, 47, 48, 49, in Appendix), we noted that the additional contributions (Cimp) are
magnetic field dependent as well. This explains the negative values of ∆C at low temperatures and the
discrepancy between ∆Cmag and ∆C. Therefore, the effective gap can be estimated if the impurity are
known, or by measuring the heat capacity in a larger temperature range (2− 50 K). Indeed, at higher
temperatures (T > 20 K), the additional contributions Cimp should vanish.

Figure 29: Residual heat capacity (C − Clatt)/T of Ba0.1Sr2.9Cr2O8 as a function of the temperature
T (H = 0). The fit (red solid line) is given by the sum of three contributions: one magnetic and two
impurities terms. The dashed lines represent the single terms.
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5 Conclusion

To investigate the adequacy of the heat capacity measurements as a method to estimate the spin gap, we
prepared polycrystalline samples of Ba3-xSrxCr2O8 (0 ≤ x ≤ 3). We measured the heat capacity with a
PPMS (relaxation calorimetry) and fitted the data with the theoretical model

C = Clatt + Coo + Cmag. (40)

After subtraction of the lattice and orbital contributions, we noted that the data were not well described
by the Schottky anomaly (isolated spin dimer approximation). The data show a tail amenable to
another Schottky anomaly, so we added an additional term (Cimp) to the model. This term consist of
a Schottky anomaly for a two-level system with energy gap ∆i. In some cases, a single term was not
enough to fit the data well, so we added two contributions. For Sr3Cr2O8, we estimate the effective gap
∆G

eff(x = 3) = (5.42± 0.05) meV for the sample (G), and ∆M
eff(x = 3) = (5.50± 0.08) meV for the sample

(M). This result agrees with a previous publication, which reported a quasi non-dispersive magnetic
excitation at 5.4 meV [13] (estimated by INS). However, a magnetic scattering experiment determined the
spin gap ∆ = 40 K (3.45 meV), a value significantly lower than our result [33]. Analogously, Quintero-
Castro et al. reported a magnetic excitation centered at 5.5 meV with the energy gap ∆ = 3.5 meV
[3] (determined by INS). 2 From these results, we confirm that the gap ∆eff, which we assessed by the
heat capacity measurement, is not the spin gap ∆. Instead, it corresponds to an energy in the center
of the band. The measurement of ∆eff for Ba3Cr2O8 supports this hypothesis. For this compound, we
measured the values ∆G

eff(x = 0) = (2.38± 0.05) meV and ∆M
eff(x = 0) = (2.42± 0.05) meV. These values

are in agreement with the result of Kofu et al. [5]. They performed another INS experiment, observing
a prominent excitation at 2.2 meV. Moreover, Nakajima et al. [4] performed high-field magnetisation
measurements and estimated the energy gap ∆ = 16.1 K (1.4 meV) from the critical magnetic field
(∆ = gµBHc, g = 2). Once again, the effective gap is larger than the spin gap, while it is comparable
to the center of the magnetic excitation. Interestingly, the effective gaps have magnitude similar to the
interaction constants, rather than to the spin gap. In fact, the interaction constants of these compounds
are J0(x = 3) = 5.55 meV [3] and J0(x = 0) = 2.38 meV [6].

This result shows that the heat capacity is only slightly affected by the inter-dimer interactions, since the
values obtained almost reflect the isolated dimer approximation, i. e. ∆eff ≈ J0. It is probable that when
considering the excitation of the spin dimers like a statistical process, the value of ∆eff corresponds to
a weighted mean value of the energies required for the excitations. For the intermediate Sr contents x
(0 < x < 3), we did not find any references about the energy gap, so we compared our values of the effective
gap with the magnitude of the exchange constants measured by a magnetisation measurement [7]. We
measured ∆eff(x = 2.7) = (4.91± 0.06) meV and ∆eff(x = 1.5) = (4.1± 0.1) meV, while J0(x = 2.7) ≈ 4.1
meV and J0(x = 1.5) ≈ 1.6 meV. Surprisingly, for both compounds, the exchange constants is smaller than
the values of ∆eff. This result is in contrast with our expectation (∆eff ≤ J0) and cannot be interpreted
without further measurements. Furthermore, the magnetic contribution of Ba1.5Sr1.5Cr2O8 is about 60 %
smaller than in the other compounds, indicating the presence of non-dimerized Cr5+ ions. To sum up
these results, we report the energy gaps and the exchange constants as a function of the Sr content x
(Figure 30). The increase of ∆eff in the region 2.7 < x < 3 is similar to the increase of J0. In contrast, the
effective gap of x = 1.5 apparently lies on a hypothetical line that connects the gap values of x = 0 and
x = 3.

Finally, we analysed the heat capacity in different magnetic fields ∆C(T,H) = C(T,H) − C(T, 0) for
x = 2.9. The data should be fitted by the difference between the magnetic contribution with and without
magnetic field, since it is the unique factor in the theoretical model that is field dependent. The theoretical
curve ∆Cmag is given by Equation (23), using the energies ε0,1,2,3 = {0, ∆eff− gµBH, ∆eff, ∆eff + gµBH}.
The Landé-factor (g = 1.94) was determined by ESR [30] for both Sr3Cr2O8 and Ba3Cr2O8, thus the fit
was performed with a single free parameter, ∆eff. However, it was not possible to obtain a good fit, because
of some additional contributions. We attribute this to the presence of some level-system that are magnetic
field dependent too (Cimp(T,H)). Therefore, we fitted the data C(T, 0) to obtain the magnitude of the
gap and to analyse the impurity contributions. The resulting effective gap is ∆eff = (5.34± 0.01) meV,
which is similar to the interaction constant J0(x = 2.9) ≈ 5.327 meV determined by INS [26]. We estimate
that the impurities contribute to the heat capacity even at temperatures higher than 20 K. In addition,
the fit of the data with magnetic field (H > 0) suggest that the theoretical model of C(T, 0) is not exact,
because the magnetic dependence of the impurities cannot be described by the function used for Cimp.
Unfortunately, the restricted range of temperatures does not allow a more precise analysis.

2The center of the magnetic excitation was determined by plotting the intensity of the scattered neutron as a function of
the wave vector transfer |Q| and energy transfer E.
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Figure 30: Interaction constant J0 (plus symbol) [7, 6, 3] and Energy gap ∆ (triangle) [3, 4, 26] as a
function of the Sr content x. The dashed line is a hypothetical connection between different ∆ values.

In conclusion, the heat capacity provides reliable results for the scale magnetic excitation of x = 0 and
x = 3. However, it is not possible to estimate the energy gap with this technique, because the Schottky
anomaly is not enough sensitive on the dispersion of the excited state. Since the experimental data are
well described by the isolated dimer approximation, the effective gap could be an approximation of the
exchange constant J0. In future, additional experiments are required to determine the behaviour of the
effective energy gap for intermediate Sr contents and to verify the discrepancy between heat capacity and
magnetisation measurements. In addition to that, we suppose that a systematic measurement of the heat
capacity with and without magnetic field would lead to more precise results. Indeed, such method does
not require fitting the lattice and the orbital contributions, which are not well defined for the intermediate
Sr content. Since there is some unknown contribution in the spin dimer system Ba3-xSrxCr2O8, we suggest
to measure a large range of temperatures (2− 50 K) in order to study the magnetic contribution and the
impurities as well. Furthermore, the investigation of a possible relation between the effective gap and the
spin gap could be a proposal for a new study.
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A Appendix

Interpolation method

Ba3Cr2O8 and Sr3Cr2O8 are two compounds with the same crystal structure and in principle the same
bond. The difference between them is essentially the mass and the volume of the unit cell. They can
be converted into each other, through the solid solution Ba3-xSrxCr2O8 by chemical substitution of Sr
respectively Ba atoms.

According to the simple spring model of solids, the atoms are bound by a force, which obey the Hook’s law
F = −fr, where f is the spring constant and r is the distance between the atoms. The mean frequency
of the ion’s vibrations is given by ω =

√
f/m. The Debye temperature is proportional to the Debye

frequency

ΘD =
~ωD

kB
∝
√
f

m
. (41)

We can estimate the spring constant f using the definition F = −dU(r)
dr for a spherical symmetric potential

U . A good approximation of the ionic potential is given by the Mie-ansatz

U(r) = −a
r

+
b

rn
, (42)

where the first term indicates the Coulomb term and the second represents the repulsion term, a and b
are constants. Since r0 is the equilibrium point, the necessary condition of a minimum dU

dr

∣∣
r=r0

= 0 must
be fulfilled. This condition leads to a first equation

a

r2
0

− nb

rn+1
0

= 0. (43)

According to the Hook’s law, the second derivative of the potential at the equilibrium point is equal to
the spring constant, thus

f =
d2U

dr2

∣∣∣∣
r=r0

= −2a

r3
0

+
n(n+ 1)b

rn+2
0

. (44)

The equation (43) in (44) gives

f =
(n− 1)a

r3
0

. (45)

The spring constant depend on r−3
0 , consequently it is proportional to the inverse of the unit cell volume

VE of the crystal and the Debye temperature scales with

ΘD ∝
1√

m · VE

, (46)

where for m one can also use the molar mass.

If we plot the heat capacity vs. T/Θ, the single terms of the lattice contribution of Ba3-xSrxCr2O8 should
have the same shape for all x (0 < x < 3). If we plot the heat capacity vs. T/Θ the curve is the same
for all x (Sr content). This means, that the compound A (Sr3Cr2O8) and B (Ba3Cr2O8) have the same
value of the molar heat capacity at two different temperatures TA and TB . Because of the relation (46),
the temperatures are correlated via

TB = TA

√
MAVA
MBVB

, (47)

where MA,B are the molar masses and VA,B are the unit cell volumes of the compounds A and B.

For two compounds with similar physical and chemical properties the ratio ∆CAB/CB ≈ ∆CAB/CA is
very small, where ∆CAB = CB −CA. For this reason the difference between the temperatures TA and TB
is small and the curve of the heat capacity can be linearised in this interval of temperatures (Figure 31).

From the known heat capacity CA,B one can derive the heat capacity for the intermediate Sr content
(0 < x < 3) via

C(T ) = CB − ε∆CAB = εCA(T ) + (1− ε)CB(T ). (48)

The geometrical relation between the catheti of similar triangle (Figure 31, inset) leads to

ε =
T − TA
TB − TA

=
(MxVx)−1/2 − (MAVA)−1/2

(MBVB)−1/2 − (MAVA)−1/2
, (49)
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where in the last step we used the equation (47). Here Mx and Vx are the molar mass and unit cell volume
of Ba3-xSrxCr2O8. The volume of the unit cell can be determined by X-ray diffraction analysis, or can
be approximated applying the Vegard’s law, i.e. by linear interpolation of the lattice parameters as a
function of x.

Figure 31: The heat capacity as a function of the temperature described by the Debye model. The inset
shows the linear approximation of the heat capacity in a small interval of temperatures.
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Sr3Cr2O8

X-Ray Diffraction Experiments

Figure 32: XRD intensity pattern of Sr3Cr2O8. The red points are the experimental data. The black
solid lines is the theoretical curve for the hexagonal space group R3̄m. The blue line is difference between
the data and the fit.

Lattice parameters of Sr3Cr2O8

a=b (Å) c (Å) Measurement method

5.5719(1) 20.1700(4) X-ray diffraction
5.57071(6) 20.1654(3) Neutron diffraction [7]
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Molar Heat Capacity

Figure 33: Difference between the molar heat capacity of the samples Sr3Cr2O8 (M) and (G) on a semi
logarithmic scale. In the range of temperatures 40− 150 K, the difference is constant, which means that
the experimental data differ from a constant factor: CM = (factor) ∗ CG.

Figure 34: Molar heat capacity C of Sr3Cr2O8 as a function of the temperature T . The experimental
data were measured for two different samples as reported in Chapter 3. The experimental data of the
sample (M) was multiplied by a factor 1.0478. The red line represents the model proposed by Wang et al
[17]. The model takes into account the lattice, orbital (∆oo = 33.4 meV) and magnetic (∆eff = 5.55 meV)
contributions. The inset show a zoom in the temperature range 0− 10 K.
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Figure 35: Residual heat capacity (C − Clatt − Coo)/T of Sr3Cr2O8 as a function of the temperatures T .
The red solid line was obtained with the energy gap ∆ = 5.55 meV, while the red dashed line represent
the theoretical curve for a three-level system(energies reported in the legend).

Ba0.3Sr2.7Cr2O8

X-Ray Diffraction Experiments

Figure 36: XRD intensity pattern of Ba0.3Sr2.7Cr2O8. The red points are the experimental data. The
black solid lines is the theoretical curve for the hexagonal space group R3̄m. The blue line is difference
between the data and the fit.
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Lattice parameters of Ba0.3Sr2.7Cr2O8

a=b (Å) c (Å) Measurement method

5.5919(1) 20.2887(4) X-ray diffraction

Molar Heat Capacity

Figure 37: Molar heat capacity C of Ba0.3Sr2.7Cr2O8 as a function of the temperature T . The red line
represents the theoretical model (Clatt + Coo). The lattice contribution was obtained by the interpolation
between the heat capacity of Sr3Cr2O8 and Ba3Cr2O8. The orbital contribution was obtained by using
the energy gap ∆oo = 28.1 meV. The magnetic contribution is marked with an arrow.

Figure 38: Residual heat capacity (C − Clatt)/T of Ba0.3Sr2.7Cr2O8 as a function of the temperatures T .
The theoretical curve (red solid line) represents the magnetic contribution.
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Ba1.5Sr1.5Cr2O8

X-Ray Diffraction Experiments

Figure 39: XRD intensity pattern of Ba1.5Sr1.5Cr2O8. The red points are the experimental data. The
black solid lines is the theoretical curve for the hexagonal space group R3̄m. The blue line is difference
between the data and the fit.

Lattice parameters of Ba1.5Sr1.5Cr2O8

a=b (Å) c (Å) Measurement method

5.6671(1) 20.8091(6) X-ray diffraction
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Molar Heat Capacity

Figure 40: Molar heat capacity C of Ba1.5Sr1.5Cr2O8 as a function of the temperature T . The theoretical
curve (red solid line) is given by the sum of the lattice and orbital contributions. The lattice term was
obtained with an interpolation method starting from the heat capacity of the parent compounds x = 0
and x = 3. The energy gap of the orbital contribution was estimated to be ∆oo = 9.3 meV. The magnetic
contribution is marked with an arrow.

Figure 41: Residual heat capacity (C−Clatt−Coo)/T of Ba1.5Sr1.5Cr2O8 as a function of the temperatures
T . The theoretical curve takes into account only the magnetic contribution, while the data show a prominent
tail, indicating the presence of impurities.
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Ba3Cr2O8

X-Ray Diffraction Experiments

Figure 42: XRD intensity pattern of Ba3Cr2O8. The red points are the experimental data. The black
solid lines is the theoretical curve for the hexagonal space group R3̄m. The blue line is difference between
the data and the fit.

Lattice parameters of Ba3Cr2O8

a=b (Å) c (Å) Measurement method

5.7415(1) 21.3901(6) X-ray diffraction
5.74038 21.38354 Neutron diffraction [7]
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Molar Heat Capacity

Figure 43: Difference between the molar heat capacity of the samples Ba3Cr2O8 (M) and (G) in a semi
logarithmic scale.

Figure 44: Molar heat capacity C of Ba3Cr2O8 as a function of the temperature T (blue dots). At the
temperature of 69 K the heat capacity reveals the Jahn-Teller transition. The theoretical curve (red line)
represents the model proposed by Wang et al. [18]. The model takes into account the lattice, orbital
(∆oo = 8.5 meV), and the magnetic contribution (∆eff = 2.38 meV).
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Figure 45: Residual heat capacity (C−Clatt−Coo)/T of Ba0.3Sr2.7Cr2O8 as a function of the temperature
T . The theoretical curves (red and orange solid line) represent the magnetic contribution.

Ba0.1Sr2.9Cr2O8

Figure 46: Residual heat capacity (C − Clatt)/T of Ba0.1Sr2.9Cr2O8 as a function of the temperature T
for the magnetic field H = 6 T. The theoretical curve (red solid line) was obtained with the energy gap
∆ = 5.26 meV and g-factor g = 1.94.
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Figure 47: Residual heat capacity (C − Clatt)/T of Ba0.1Sr2.9Cr2O8 as a function of the temperature T
for the magnetic field H = 16 T. The theoretical curve (red solid line) was obtained with the energy gap
∆ = 5.26 meV and g-factor g = 1.94.

Figure 48: Residual heat capacity (C − Clatt)/T of Ba0.1Sr2.9Cr2O8 as a function of the temperature T
for the magnetic field H = 17.5 T. The theoretical curve (red solid line) was obtained with the energy gap
∆ = 5.26 meV and g-factor g = 1.94.
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Figure 49: Residual heat capacity (C − Clatt)/T of Ba0.1Sr2.9Cr2O8 as a function of the temperature T
for the magnetic field H = 19 T. The theoretical curve (red solid line) was obtained with the energy gap
∆ = 5.26 meV and g-factor g = 1.94.
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