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Abstract

In order to measure the figure of merit ZT of a thermoelectric device, one has to
measure the Seebeck coe�cient, the total thermal conductivity and the internal elec-
trical resistance separately which can be quite cumbersome. The standard method for
measuring ZT involves at least two separate experiments.
This thesis describes new methods for measuring the figure of merit ”ZT” using one
single experiment. The new methods both require the same experimental setup. One
side of the thermoelectric cooler is kept cool at room temperature while the other is
heated up using a heat source. The heat source is then shut down and the body is left
to cool and a measurement of the temperature decay is taken. If one measurement
of the temperature decay is taken while the thermoelectric cooler is inactive and one
measurement is taken while it is active, two time constants which describe the expo-
nential decay of the temperature are obtained. The figure of merit ZT can then be
obtained solely by using these two time constants, which means that nothing more
than a temperature gradient is needed for the determination of ZT .

The measurement results obtained via the new methods were compared to the measure-
ment results obtained by using the standard method and they are in good agreement
with each other.
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Introduction

1.1 Seebeck and Peltier e↵ects

A thermoelectric device is a module, which converts heat into electrical energy and
vice versa. This is done via the Seebeck and Peltier e↵ect correspondingly.

The Seebeck e↵ect was found by Thomas Seebeck in 1821 [1]. The Seebeck e↵ect
describes that when a material (a metal rod, for example) is heated up to a tempera-
ture TH at one end and kept cool at a temperature TC at the other end, a di↵erence
in the electrical potential appears between the cold and the hot end. This electrical
potential can be described by the following equation:

�VS = ↵�T [V ] (1.1)

where ↵ is an intrinsic property of the material, called Seebeck coe�cient, given
in [V/K] and �T is the temperature di↵erence (TH � TC). This e↵ectively allows for
power generation, if able to keep the temperature gradient up. In order to be able to
keep the temperature gradient up, it is usual to use junctions of two di↵erent materials
with di↵erent Fermi-energies, as will be explained later in this chapter. One of the
junctions is then heated up while the other is kept cool. A schematic view of the
Seebeck e↵ect can be seen in figure 1.1.

Figure 1.1: Schematic description of the Seebeck e↵ect. ”A” in red represents the first
material, while ”B” in blue represents the second material. The voltmeter between
the two ”B” materials measures the electrical potential due to the Seebeck e↵ect.

This can be done with simple wires, which then can be used as a thermometer to
determine �T according to equation (1.1). That is called a thermocouple.
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The opposite can also be achieved, meaning that a temperature di↵erence �T
can be imposed by letting a current flow through the materials and their junctions.
This allows the cooling of one junction while heating the other junction, similar to a
refrigerator. Peltier found this e↵ect in 1834, which is why it is called the Peltier e↵ect
[2,3]. A schematic view of the Peltier e↵ect can be seen in figure 1.2.

Figure 1.2: Schematic description of the Peltier e↵ect. ”A” in red represents the first
material, while ”B” in blue represents the second one. Driving a current through the
circuit results in a temperature di↵erence at the junctions of the materials.

These two e↵ects can be better understood if we look at the Fermi levels and the
energy bands. The electronic band structure for a metal can be seen in figure 1.3.

Figure 1.3: Electronic band structure of a metal. CB stands for conduction band and
VB for valence band. EF is the Fermi level.

The Fermi-Dirac distribution for electrons gives the probability of an electron oc-
cupying a state of energy E and is given by:

fe(E, T ) =
1

exp(E�EF

kBT
) + 1

(1.2)

where E is the energy of the electron, kB is the Boltzmann constant and T is the
temperature [4].
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The Fermi-Dirac distribution for di↵erent temperatures can be seen in figure 1.4.

Figure 1.4: Fermi-Dirac distribution with T0 = 0K and T3 > T2 > T1 > T0. At T0, all
electrons are in the valence band as the probability of an electron occupying an energy
state within the valence band is 1 [5].

The probability of an electron being in the conduction band instead of the valence
band therefore rises, if the temperature rises.
If now one side of a metal rod is actively heated to TH while the other side is kept
cool at TC , the probability that an electron is in the conduction band is higher on the
hot end than on the cold end. There will be a noticeable concentration of electrons in
the conduction band, above the Fermi energy on the hot end. As always, the principle
of minimum energy applies and the charge carriers go to where the energy is lower,
meaning they travel from the hot end to the cold end. In doing so, they also carry
some of thermal energy with them. Now that there are more charge carriers on the
cold side of the metal rod, there is an electrical potential di↵erence from cold side to
the hot side, proportional to the temperature di↵erence between the two ends.

Figure 1.5: Metal rod which is hot on one end and cold on the other end. On the
hot end, the Fermi-Dirac distribution is more eccentric than on the cold end, as the
temperature is higher. This leads to electrons on the hot end having higher energies
than on the cold end. The electrons then seek to lower their energy, meaning they
travel to the cold end while carrying some thermal energy with them. The e↵ect no
longer holds when the metal rod is in thermal equilibrium [6].
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A higher temperature also means higher momentum. This is critical for maintaining
the temperature di↵erence. In fact, the temperature di↵erence cannot be maintained
in the case described in figure 1.5, since the hot, high momentum electrons travel to
the cold end of the rod faster than cold, low momentum electrons are able to di↵use
towards the hot side of the rod. The solution to this problem is to lower the potential
at the hot end and to raise it at the cold end. One method of achieving this would be
to use a junction of two di↵erent metals which have di↵erent Fermi energies, instead
of one single metal rod.
It should be noted that the explanation above has been simplified. In practise, the
Fermi level is dependent on the temperature. Also, attaching one material to another
(EF,A 6= EF,B) without any form of electrical insulation will result in an electrical
potential di↵erence, resulting in electrons from one material to flow into the other
material, until the two Fermi levels are equalized [4, 7].

The Peltier e↵ect can be explained by looking at a junction of a metal to a semi-
conductor, as seen in figure 1.6 [6].

Figure 1.6: Junction between a metal (left) and a semiconductor (right). CB stands
for conduction band, while VB stands for valence band. The green balls represent the
free electrons of the metal. If now a current flowing from the metal to the semiconduc-
tor is applied, high energy electrons carrying thermal energy are transported to the
conduction band of the semiconductor, resulting in a net transport of thermal energy
out of the metal. The metal thus cools down. If the current is reversed, high energy
electrons from the conduction band of the semiconductor are transported into the
metal, resulting in the metal heating up [6]. In this case, the Fermi levels of the metal
and semiconductor will not equalize, since we applied an external potential di↵erence
which prevents this [8].

It is important to note that the thermoelectric phenomena are both accompanied by
the irreversible e↵ects of thermal conduction and Joule heating. It is not possible to
drive an arbitrarily high current through a thermoelectric cooler, since at some point,
the Joule heating which is given by PJ = RI2 will be greater than the cooling power
due to the Peltier e↵ect given by PP = ↵TI [9, 10].
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In practise, p-type and n-type semiconductors are the preferred materials to make
use of the Seebeck and Peltier e↵ect instead of metals. This is done in order to
maximize the e�ciency of the device. A power generation device, fueled by the Seebeck
e↵ect, schematically looks like figure 1.7, while a refrigeration device, fueled by the
Peltier e↵ect, schematically looks like figure 1.8 [11].

Figure 1.7: Schematic description of the Seebeck e↵ect used for power generation. A
heat source is placed on top of the p-type and n-type semiconductors, leading to a
downwards flow of the charge carriers, which also carry thermal energy. Since there
is an excess of positively charged holes on the p-type side and an excess of negatively
charged electrons on the n-type side, there is a net potential di↵erence �VS which
causes a current I to flow through the resistance R.
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Figure 1.8: Schematic description of the Peltier e↵ect used for cooling. Driving a
current through the n-type semiconductor causes electrons carrying thermal energy
to flow towards the bottom. The current then goes downwards through the p-type
semiconductor, causing holes carrying thermal energy to flow towards the bottom as
well. The result is that the top side of the p-type and n-type semiconductors is cooled,
while the bottom side is heated. The sides which are cooled and heated can be swapped
by reversing the flow of the current.

To further maximize this e↵ect, it is usual to build many such p-type and n-type
semiconductor cubes, such that they are connected in series electrically and in parallel
thermally, as seen in figure 1.9 [12].

Figure 1.9: Inside view of a thermoelectric cooling device as it is used in practise [12].
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1.2 Figure of Merit ZT

The figure of merit ZT is a dimensionless value which is directly related to the e�ciency
of the thermoelectric device. It is given by the following equation:

ZT =
↵2�T

k
=

↵2T

Rk
(1.3)

where ↵ is the Seebeck coe�cient, � the electrical conductivity, T the temperature,
k the total thermal conductivity in the dimensions

⇥
W

K

⇤
and R the internal electrical

resistance, obtained by using R = 1
�
.

The relation between the e�ciency and the figure of merit is seen in the equation
below:

⌘ =
W

QH

=
TH � TC

TH

" p
1 + ZTavg � 1

p
1 + ZTavg + TC/TH

#
(1.4)

where W is the power input, QH is the net heat flow rate, TH is the temperature on
the hot end, TC is the temperature on the cold end and Tavg is the average temperature.
The higher the figure of merit, the more e�cient the device, since ⌘ /

p
1 + ZTavg .

This explains why semiconductors are used in practise, rather than metals. For the
figure of merit to be as large as possible, the electrical conductivity needs to be large
while the thermal conductivity needs to be small. This is more feasible to achieve in
semiconductors, which is why they are preferred instead, among other reasons.
The figure of merit can be further increased by using two di↵erent materials (e.g. p-
type and n-type semiconductors), as ZT for two materials is expressed by the following
equation:

ZT =
(↵p � ↵n)2Tp
Rpkp +

p
Rnkn

(1.5)

As can be seen, the larger the di↵erence between the two Seebeck coe�cients of
the p-type and n-type semiconductors, the higher ZT [2].

The standard procedure to measure ZT is quite cumbersome, as it requires two sepa-
rate experiments [13]. In this thesis, I will show that ZT can be measured in one single
experiment. The theory of this new method will be elaborated in the next chapter.
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Theory

2.1 First Method: Temperature Independent ZT

The flow of heat of a thermoelectric cooler is described in the following set of equations
[10]:

QC = �↵TCI +
1

2
RI2 � k(TH � TC) (2.1)

QH = ↵THI +
1

2
RI2 + k(TH � TC) (2.2)

where QC is heat removed from the side of the cooler which is to be cooled and QH is
the heat rejected at the other side of the cooler, according to figure 1.8. The middle
term 1

2RI2 comes from the Joule heating due to the internal resistance of the cooler
P = RI2. It has been assumed that the Joule heating distributes equally to the cool
side and to the hot side [14].
If we do not drive a current through the cooler after heating up the cooling side to
TH while keeping the other side at TC (by attaching a heat sink, for example) and
then remove the heat source and let the heated side cool down once TH is reached
and the heat sink assumed to be an infinite thermal reservoir, such that TC = const.,
while also assuming that the thermal conductivity k and the heat capacity C are not
temperature dependent, equation (2.1) reduces to:

QC = �k(TH � TC) (2.3)

A schematic of this process can be seen in figure 2.1.

Figure 2.1: Process of cooling down when the thermoelectric cooler is inactive. The
only term which contributes to the heat flow is QC = �k(TH � TC).
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Using QC = CṪH , we get:

CṪH = �k(TH � TC) (2.4)
Z

dTH

1

(TH � TC)
= � k

C

Z
dt (2.5)

log(TH(t)� TC) = Aexp

✓
� k

C
t

◆
(2.6)

TH(t) = Aexp

✓
� t

C/k

◆
+ TC (2.7)

Looking at equation (2.7), we are able to define the first time constant ⌧1:

⌧1 := C/k (2.8)

By imposing the fact that TH(t = 0)
!
= TH , we can solve for the integration constant

A:

TH = A+ TC (2.9)

A = TH � TC = �T (2.10)

Thus, the final expression for TH(t) becomes:

TH(t) = �Texp

✓
� t

⌧1

◆
+ TC (2.11)

Now the case is considered where the circuit is closed after heating up the cooled side
to TH , such that an internal current I runs through the thermoelectric cooler due to
the Seebeck e↵ect. The heat source is again removed once TH is reached, letting the
cooled side cool down. A schematic of this process can be seen in figure 2.2

Figure 2.2: Process of cooling down when the thermoelectric cooler is inactive. If we
neglect the Joule heating, the terms which contribute to the heat flow are
QC = �↵TCI � k(TH � TC).

Using Kirchho↵’s voltage law, which states that the sum of all voltages is equal to
zero in a closed circuit we get a di↵erent equation for TH(t). Using equation (1.1) and
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�VR = RI, we get [10, 15]:

NX

n=1

Vn = 0 (2.12)

�VS ��VR = 0 (2.13)

↵(TH � TC)�RI = 0 (2.14)

TH =
RI

↵
+ TC (2.15)

Taking the derivative of equation (2.15) with respect to time, allows us to replace ṪH

in QC = CṪH from equation (2.1). This way, a di↵erential equation for the internal
current I is obtained:

ṪH =
R

↵
İ (2.16)

CR

↵
İ = �↵TCI +

1

2
RI2 � kR

↵
I (2.17)

CRİ + (↵2TC + kR)I � 1

2
RI2 = 0 (2.18)

where equations (2.16) and (2.15) have been used in (2.1) to obtain (2.17).

Equation (2.18) can further be simplified by neglecting the Joule heating term 1
2RI2 .

This is plausible due to equation (2.14), since 1
2RI2 < RI2 = ↵(TH � TC)I << ↵TCI

if TH � TC << TC . [10].
We end up with the following equation:

RCİ + (↵2TC + kR)I ⇡ 0 (2.19)

We can now solve this di↵erential equation to obtain an expression for I(t):

İ

I
=

�↵2TC � kR

RC
(2.20)

Z
1

I
dI =

Z �↵2TC � kR

RC
dt (2.21)

log(I(t)) = A
�↵2TC � kR

RC
t (2.22)

I(t) = Aexp

✓
�↵2TC � kR

RC
t

◆
(2.23)

Equation (2.23) can then be used to replace I in equation (2.14). This ultimately
allows us to obtain an expression for TH for an active thermoelectric cooler:

↵(TH(t)� TC)�RAexp

✓
�↵2TC � kR

RC
t

◆
= 0 (2.24)

TH(t) = A
R

↵
exp

✓
�↵2TC � kR

RC
t

◆
+ TC (2.25)
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The integration constant A can again be identified by imposing the fact that

TH(t = 0)
!
= TH :

TH = A
R

↵
+ TC (2.26)

A =
↵

R
(TH � TC) (2.27)

TH(t) = �Texp

✓
�↵2TC � kR

RC
t

◆
+ TC (2.28)

By defining a second time constant ⌧2, it is possible to express the exponential decay,
analogue to equation (2.11):

TH(t) = �Texp

✓
� t

⌧2

◆
+ TC (2.29)

with

⌧2 :=
RC

↵2TC + kR
(2.30)

=
C/k

1 + ↵2TC

Rk

(2.31)

=
⌧1

1 + ZT
(2.32)

where ⌧1 = C/k and ZT = ↵
2
TC

Rk
have been used in equation (2.31) in order to obtain

(2.32).

Thus, we can finally obtain an expression for ZT by solving for it in equation (2.32):

ZT =
⌧1
⌧2

� 1 (2.33)

It is therefore possible to determine ZT simply through a temperature gradient, namely
by measuring the exponential decay of the temperature of the heated body, once where
the thermoelectric cooler is inactive (⌧1, circuit open) and once where it is active (⌧2,
circuit closed), while the heat sink is kept at a constant temperature TC .

Time constants ⌧1 and ⌧2 can also be obtained by heating up the side which is to
be cooled down by the thermoelectric cooler and measuring the rise of the tempera-
ture over time. Since this is the opposite of the process described above, we can take
equations (2.11) and (2.29) and write:

T 0
H
(t) = �T

✓
1� exp

✓
� t

⌧ 01,2

◆◆
+ TC (2.34)

This makes sense, considering T 0
H
(t = 0) = TC and T 0

H
(t ! 1) = �T+TC = TH Time

constants ⌧ 01 and ⌧ 02 have been marked with a prime, because they are only equivalent
to ⌧1 and ⌧2 if the time constants are truly temperature independent. Since ZT ex-
plicitly depends on the temperature from equation (1.3), while also depending on ↵, R
and k, which all depend on temperature too [16], it is highly unlikely that the time
constants ⌧1 and ⌧2 are truly constant and do not depend on temperature as well.
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2.2 Second Method: Temperature Dependent ZT

If we can therefore find a way to express ⌧1,2 not as constants, but dependent on tem-
perature T , we can also find the temperature dependence of ZT itself according to
equation (2.33).

Assuming our body which is to be cooled down by the thermoelectric cooler has an
isotropic temperature at any time t (not dependent on spatial coordinates) and that
heat exclusively flows from the hot body into the heat sink, neglecting any thermal
radiation and other e↵ects, this is indeed achievable. The first law of thermodynamics
for a closed system states the following:

Q̇ = W+
dU

dt
(2.35)

where Q̇ is the heat transfer rate, W the work transfer rate and dU

dt
the change of the

internal energy per time.
Assuming no work is done on the system, this reduces to [17]:

Q̇ =
dU

dt
(2.36)

Using dQ = CdT [18], equation (2.36) becomes as follows:

Q̇ =
dU

dt
= C

dT

dt
(2.37)

Fourier’s law of heat conduction states:

Q̇

A
= �

dT

dx
(2.38)

where Q

A
is the heat flux (heat rate per unit area) and  the thermal conductivity in

units of
⇥

W

mK

⇤
[17].

Inserting equation (2.37) into equation (2.38), the following expression is obtained:

C

A

dT

dt
= �

dT

dx
(2.39)

Ṫ = �A

C

dT

dx
(2.40)

Ṫ = � k

C
�T (2.41)

˙TH = �1

⌧
(TH(t)� TC) (2.42)

where ⌧ = C

k
was used to obtain equation (2.42) and k = A

dx
was used to obtain the

total thermal conductivity k in units of [W/K]. Solving for ⌧ therefore gives us an
expression for temperature dependent time constants:

⌧1,2 =
TC � TH(t)

ṪH

(2.43)

Finally, we are able to determine a temperature dependent ZT via equation (2.33).

It should be noted that the actual value of the heat capacity C is not relevant for
anything other than tweaking the values of ⌧ , as seen in equations (2.8) and (2.41).
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2.3 Third Method: Determining ZT using the Electrical Resistance R

A third and final method for determining ZT involves the electrical resistance R.
When a current I is flowing through a thermoelectric cooler, heat is generated or
absorbed (depending on the direction of the current) at rate Q̇ as follows [10]:

Q̇ = ↵TI (2.44)

According to equation (2.38), we can then write:

Q̇ = ±k�T (2.45)

�T = ±Q̇

k
(2.46)

where the sign is either positive or negative depending on the direction of the current.
We can decide to set the sign positive without a loss of generality.
Using this identity of �T in the equation for the Seebeck e↵ect, we get:

�VS = ↵�T =
↵2T

k
I (2.47)

If we now divide by I, we realize that we e↵ectively measure a ”false” electrical re-
sistance Reff when we naively drive a current through the thermoelectric cooler to
measure its internal resistance:

�VS

I
=

↵2T

k
= ZT ⇤RTE (2.48)

Reff = ZT ⇤RTE (2.49)

where RTE denotes the real internal electrical resistance of the thermoelectric cooler.
This means that when we drive a current I through a thermoelectric cooler in order
to measure its internal electrical resistance, we actually measure a resistance which is
false, namely the e↵ective electrical resistance Reff . The actual measured voltage and
electrical resistance are given by [19]:

Veff = I ⇤RTE + VS (2.50)

Reff =
Veff

I
= RTE + ZT ⇤RTE (2.51)

Reff = RTE(1 + ZT ) (2.52)

Thus, once RTE and Reff are known, ZT can be obtained by solving for it in equation
(2.52):

ZT =
Reff

RTE

� 1 (2.53)

This could also potentially yield a new method for measuring the internal electrical
resistance RTE of a thermoelectric cooler. If equation (2.53) is set equal to (2.33), we
obtain:

Reff

RTE

=
⌧1
⌧2

(2.54)

RTE =
Reff ⇤ ⌧2

⌧1
(2.55)
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Experiment

3.1 Experimental Setup

The experiment itself can be seen in figure 3.1.

Figure 3.1: Experiment used for measurement of ZT . (1): Heat sink, approximated
to be an infinite thermal reservoir such that TC ⇡ const. It is a large body of copper.
(2): Body on which a temperature TH will be applied. It is also made of copper and
much smaller than the heat sink. (3): Thermoelectric cooler, located beneath the
smaller copper body (2). (4): Copper/Constantan (Type T) thermocouple used as
a thermometer to measure TH � TC . Its junction is attached to the smaller copper
body (2) via silver epoxy. The copper wire is directly connected to a voltmeter. The
constantan wire is soldered onto the heat sink (1). From that solder joint, a copper
wire is continued and connected to the voltmeter. (5): Switch used for activating
(closed circuit) and deactivating (open circuit) the thermoelectric cooler (3).
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It makes sense to approximate the temperature of the heat sink (1) as TC ⇡ const.,
considering the di↵erence in mass of the copper body which is heated up to a tem-
perature TH : m(1) >> m(2). This leads to the fact that the heat capacity of the heat
sink is much larger than that of the small copper body: C(1) >> C(2) due to C = cm,
where c is the specific heat capacity [18]. The temperature of the heat sink has been
set to room temperature for the experiment: TC = 295K.

At the very beginning of the experiment, a soldering iron was used at low power
in order to heat up the small copper body. However, this did not work very well as
the heat dissipated too quickly and I was not able to build up a significant temper-
ature gradient. An accident also occurred once, where I slipped with the soldering
iron from the small copper body onto the silver epoxy adhesive, which caused the
copper/constantan thermocouple to detach from the small copper body. This had to
be cleaned up and re-glued with silver epoxy.
In order to get a meaningful temperature gradient and to prevent further accidents, a
heater with RH = 10⌦ was ordered, which means that a heating power of PH = RHI2

could be achieved by driving a current I through it. The heater can be seen in figure
3.2.

Figure 3.2: Heater which was attached to the small copper body. It consists of eight
separate resistances with R = 2⌦, adding up to a total of RH = 10⌦.

Before the heater could be soldered onto the small copper body, the place where the
heater would be attached had to be electrically insulated first to prevent a short cir-
cuit. To do this, a heat resisting insulation tape was attached to the top of the small
copper body. It can be seen as an orange film on top of the small copper body in
figure 3.1.
A close up of the small copper body with its heater can be seen in figure 3.3.
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Figure 3.3: Close up of the experiment with the heater attached onto the small copper
body. The thermoelectric cooler as well as the silver epoxy adhesive can be seen
more clearly in this figure. The device on the right is a broken thermoelectric cooler,
originating from a past experiment.

The experimental station can be seen in its entirety in figure 3.4.
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Figure 3.4: Experimental station. (1): Experiment described in figure 3.1, covered
beneath a Styrofoam container for thermal insulation. (2): Power supply used to
drive a current through the heater. Model: Skytronic 650.682. (3): First multi meter,
used as a volt meter to measure �T = TH � TC . This is where the two ends of
the copper/constantan thermocouple connect to. The multi meter is connected to a
computer via USB for data logging. Model: Keysight 34465A. (4): Second multi meter
used as a volt meter. This is used in later stages of the experiment, where ZT was
determined by measuring ↵, RTE and k separately in order to compare it to the new
method of measuring ZT . Model: Keithley 2000. (5): Load resistance RLoad = 1⌦
used in later stages of the experiment in order to determine RTE. (4) and (5) are not
needed to measure ZT via the new method.

The software used for data logging is called PathWave Digital Multimeter.

3.2 Voltage to Temperature Conversion

Before anything can be measured, the voltages �V of the copper/constantan thermo-
couple have to be converted into temperature di↵erences�T . To do this, my supervisor
Prof. Dr. Schilling supplied me with a table which relates �V to �T = TH �TC when
TC is kept constant at TC = 295K.
I plotted the measurement results given by the table and fitted a polynomial of degree
two for it. The result can be seen in figure 3.5.
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Figure 3.5: Conversion of voltage to temperature for a copper/constantan thermocou-
ple.

The fitted polynomial is as follows:

�V (T ) = 4.08 ⇤ 10�8 ⇤ T 2 + 1.64 ⇤ 10�5 ⇤ T � 8.39 ⇤ 10�3 (3.1)

Afterwards, the scattering and the correlation coe�cient R2 were computed to deter-
mine the quality of the fit. The scattering, which is the fitted function subtracted
by the measured data, can be seen in figure 3.6. The exact value of the correlation
coe�cient turned out to be R2 = 0.9999999961871723. The closer it is to unity, the
better the quality of the fit, which means that equation (3.1) is an excellent fit for our
data.
As can be seen in figure 3.6, the scattering negligibly small. Correspondingly, the root
mean square error is also negligibly small as �rms = 9.33 ⇤ 10�8.

Solving equation (3.1) for the temperature, yields us the necessary expression for
the conversion from voltage to temperature:

T (�V ) =
�1.64 ⇤ 10�5 +

p
2.69 ⇤ 10�10 + 1.63 ⇤ 10�7(�V + 8.39 ⇤ 10�3)

8.16 ⇤ 10�8
(3.2)

where we only restrict ourselves to positive values of T (�V ) as there are no negative
temperature values.
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Figure 3.6: Di↵erence of the fitted function (equation (3.1)) and the measured data
from the table.

3.3 Testing

The next step is to test the experiment. The less scattering we have, the more accurate
the result will be, so di↵erent methods of thermal insulation for the experiment have
to be tested. This is also important because we are neglecting any thermal radiation
in section 2.2. In each of the tests, I used a soldering iron to create a �T of roughly
12K. The first test was without any thermal insulation, the results can be seen in
figure 3.7.
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(a) TH(t) data and fit of the process of cooling down

(b) Scattering obtained by subtracting the measured data by the fit in (a).

Figure 3.7: Test 1: No thermal insulation
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As can be seen, the scattering in figure 3.5 (b) is quite large, especially when com-
pared to the tests where thermal insulation has been used. In fact, the scattering can
even be seen from the exponential fit in figure 3.5 (a). Only the process of cooling
down has been considered here, since it is not practical to use the process of heating
up while a soldering iron was used.

The second test was run by using a glass container to cover up the experiment. The
result of this test can be seen in figure 3.8.
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(a) TH(t) data and fit of the process of cooling down

(b) Scattering obtained by subtracting the measured data by the fit function in (a).

Figure 3.8: Test 2: Glass container over experiment
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The scattering in this case is even more extreme than without any thermal insu-
lation. The reason behind this is that a window was opened in the room where the
experiment was conducted during the measurement. However, this is conclusive that
a glass container covering the experiment is not suitable for thermal insulation.

The next test involved a piece of cloth covering the experiment. My sweater served as
a piece of cloth in this test. The result can be seen in figure 3.9.
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(a) TH(t) data and fit of the process of cooling down

(b) Scattering obtained by subtracting the measured data by the fit function in (a).

Figure 3.9: Test 3: Cloth over experiment
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This time, the scattering is on a much smaller scale than before. There was no
noticeable di↵erence between the scattering when the window was closed and when it
was opened.

The fourth test involved covering the experiment in a container of Styrofoam. For
this, a suitable body of Styrofoam was cut into shape such that it could cover the
experiment without any gaps. However, as can be seen in figure 3.4, the Styrofoam
container was quite tall. Since it is hollow, it means that there still is a considerable
amount of air inside. The results of this test can be seen in figure 3.11.
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(a) TH(t) data and fit of the process of cooling down

(b) Scattering obtained by subtracting the measured data by the fit function in (a).

Figure 3.10: Test 4: Styrofoam over experiment
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The result is more satisfactory than the result where cloth was used. The scatter-
ing is smaller and more even.

In the final test, the hollow body of the Styrofoam container was filled with paper,
commonly used to dry hands. The results of this can be seen in figure 3.9.
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(a) TH(t) data and fit of the process of cooling down

(b) Scattering obtained by subtracting the measured data by the fit function in (a).

Figure 3.11: Test 5: Styrofoam with paper over experiment
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This is the best result as it has the smallest scattering. Nevertheless, the actual
measurements have been done for both cases, with and without paper inside the Sty-
rofoam container.

3.4 Measurements

I began taking measurements for the determination of ZT as soon as the heater was
successfully attached onto the small copper body. My measuring methodology went
as follows:

First, I would use a di↵erent electrical resistance which has the same value as the
heater (RH = 10⌦) in order to prepare the power supply to drive a given current
through the heater to achieve a predetermined temperature gradient �T . The cur-
rents for which I aimed for, the corresponding voltage of the power supply and the
resulting heating power can be seen in table 3.1 below.

�T [K] PH [W ] V [V ] I[A]
10 0.317 1.78 0.178
20 0.636 2.52 0.252
30 0.954 3.09 0.309
40 1.272 3.57 0.357
50 1.590 3.99 0.399
60 1.908 4.37 0.437
70 2.228 4.72 0.472
80 2.540 5.04 0.504

Table 3.1: Temperature gradients which were aimed for in the experiment.

The needed current for a predetermined �T was obtained through equation (2.46),
where Q̇ = PH and only positive values of �T = PH

k
were considered. The required

value of the thermal conductivity k was obtained through an article by Prof. Dr.
Schilling in which he used the same experiment. Its value has been taken as k =
0.0318W/K [10]. The current which is to be set up at the power supply is then given
by:

PH = I2RH (3.3)

I =
p

PH/RH (3.4)

Finally, the voltage is obtained by simply applying V = RHI. It should be noted that
table 3.1 only serves as a rough reference. Setting up a current at the power supply
was a very inaccurate process. However, this did not matter because �T was obtained
from the fit function according to equation (2.29) anyways.

After setting up a current, I plugged in the heater into the power supply, the power
supply being turned o↵. I would then start the data logging and leave it running for
one minute until I would turn on the power supply which started the heating process.
I would let it heat for 20 minutes and then turn the power supply o↵ again, initiating
the process of cooling down. The data would log for 20 more minutes until stopping.
An example of a raw measurement following this methodology can be seen in figure
3.12.
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Figure 3.12: Raw measurement data as seen directly from the data logging software.
The first minute of the measurement is with the power supply o↵. The next 20 minutes
are with the power supply on, afterwards another 20 minutes of cooling with the power
supply o↵ are measured.

As expected in section 2.1, the process of heating up and cooling down seem to be
an exponential growth and decay correspondingly.
Afterwards, I would export the raw data as a csv file and separate the processes of
heating up and cooling down by hand. For the process of cooling down, I kept two
versions. One version included the entire process, right from the moment where the
power supply was turned o↵. In the other version, I would prune the data such that
the first 60 seconds of the process are not included. The reason for this was that the
heater still carries some heat after the power supply is turned o↵. If I included this
data, I would get a di↵erent fit function because of this lingering heat source, so I
decided to wait in order to only include the cooling down of the small copper body,
and not the heater itself as well.
Nothing was done with the first minute of the measurement. This only served as a
way to compare �T with the temperature gradient of the fit, in case anything went
wrong.
In total, 24 measurements were done. Two sets of measurements according to table
3.1 with paper inside the Styrofoam container and one set of measurements without
paper.
With this data, it was possible to determine ZT according to sections 2.1 and 2.2.
All data analysis was done in python. The method used to find fit functions was the
method of least squares.
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In order to compare the ZT obtained via the new method to the ZT obtained
using the standard method, measuring ↵, RTE and k separately was required as well.
The measurements of ↵ and k could be done by adding one additional apparatus to
the experimental setup, namely a second volt meter according to figure 3.4.
The Seebeck coe�cient ↵ was determined by measuring the Seebeck voltage across
the thermoelectric cooler. Using equation (1.1), we get:

↵ =
�VS

�T
(3.5)

where �T was obtained via the fit function during the process of heating up.
The thermal conductivity k was obtained using equation (2.46). Solving for k and
using Q̇ = PH , we get:

k =
PH

�T
(3.6)

k =
I2RH

�T
(3.7)

where I was the current driven through the heater. Since the power supply did not
have a su�ciently accurate display to show the current, the voltage across the heater
RH was measured and the exact current I was determined through I = V/RH .
The circuit diagram for the determination of ↵ and k can be seen in figure 3.13.

Figure 3.13: Circuit diagram for the determination of ↵ and k. The DC voltage source
on the right part of the diagram represents the inactive thermoelectric cooler which
generates a DC voltage due to the Seebeck e↵ect.

The determination of the internal resistance of the thermoelectric cooler RTE was more
involved than this due to the appearance of a ”false” resistance as described in section
2.3.
One of the simplest and most precise methods to measure RTE is the so-called instant
load-voltage analysis method. It requires an additional load resistance RLoad as seen
in figure 3.4. In this case, the load resistance was
RLoad = 1⌦.
The Seebeck voltage, once the small copper body is heated up to TH with an open
circuit, is again given by equation (1.1) and according to Ohm’s law we get:

�VS = ↵�T (3.8)

�VS = I(RTE +RLoad) =: VM1 (3.9)

VM1 is the same voltage measured, which is used for determining ↵. Solving for RTE,
the following expression is obtained:

RTE =
VM1 � IRLoad

I
(3.10)
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When the circuit is now closed and the load resistance is connected in series with the
thermoelectric cooler, a current I will flow through the thermoelectric cooler due to
the Seebeck voltage. This current then leads to the Peltier e↵ect which causes the
small copper body to cool down, lowering the value of �T . If this temperature change
is corrected back to what it was in the open circuit by increasing the current being
driven through the heater by the power supply, we can measure another voltage VM2

across the load resistance. We need to correct �T due to the fact that we expressed
VM1 in terms of RLoad instead of RTE only. Compared to VM1, the load resistance
causes a voltage drop through the circuit. VM2 thus is the sum of the voltage drops:

VM2 = VM1 � IRTE = IRLoad (3.11)

Using the expression of IRLoad from equation (3.11) and applying it in equation (3.10),
we can express the internal resistance of the thermoelectric cooler as follows [19]:

RTE =
VM1 � VM2

I
(3.12)

Using the fact that I = VM2/RLoad, we arrive to the following expression for RTE:

RTE =

✓
VM1

VM2
� 1

◆
RLoad (3.13)

The setups for measuring VM1 and VM2 can be seen in figure 3.15.

(a) Measurement of VM1. This is the same pro-
cess as the measurement of ↵.

(b) Measurement of VM2. A current I now flows
through the circuit and the voltage drop is mea-
sured across the load resistance.

Figure 3.14: Circuit diagrams for measuring VM1 and VM2.

However, up until now, we have completely neglected the resistance of the cables
through which the current flows as well. Since this is now included in our RTE, we can
simply measure the resistance of the cables RC using the four-point probes method and
subtract it from RTE. The resistance of the cables turned out to be RC = 0.036⌦. We
arrive at our final expression for the internal resistance of the thermoelectric cooler:

R0
TE

= RTE �RC (3.14)
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Results and Analysis

4.1 Determination of ZT using the first method

The first method for the determination of ZT involves fitting a function described
by equation (2.34) during the process of heating up and equations (2.11) and (2.29)
during the process of cooling down through the measured data points. Summarizing
equations (2.11) and (2.29), we get:

TH(t) = �Texp

✓
� t

⌧1,2

◆
+ TC (4.1)

We can then extract ⌧1 and ⌧2 from the fit function and determine ZT using equation
(2.33). I ran two sets of measurements with paper inside the Styrofoam container.
The results of the first set of measurements can be seen in table 4.1 below.

N I[A] �T [K] Circuit ⌧ heating [s] ⌧ cooling [s]
1.0 0.19 11.38±0.01 open 153.18±0.14 163.97±0.03
1.0 0.19 8.46±0.01 closed 113.66±0.1 119.02±0.04
2.0 0.25 18.85±0.1 open 153.34±0.08 164.10±0.03
2.0 0.25 14.16±0.01 closed 113.31±0.1 118.29±0.03
3.0 0.31 29.77±0.01 open 151.98±0.09 162.86±0.04
3.0 0.31 22.86±0.01 closed 112.30±0.1 118.13±0.03
4.0 0.34 36.28±0.01 open 151.32±0.1 163.22±0.04
4.0 0.34 26.87±0.01 closed 111.67±0.09 117.98±0.03
5.0 0.38 44.97±0.02 open 151.92±0.12 163.40±0.05
5.0 0.38 33.05±0.02 closed 111.50±0.1 117.97±0.04
6.0 0.42 54.28±0.02 open 151.53±0.12 164.40±0.03
6.0 0.42 40.10±0.02 closed 111.52±0.1 117.39±0.03
7.0 0.47 63.56±0.02 open 150.09±0.09 162.00±0.04
7.0 0.47 47.89±0.03 closed 110.75±0.1 117.14±0.03
8.0 0.50 72.69±0.03 open 146.49±0.09 161.62±0.04
8.0 0.50 54.70±0.03 closed 109.84±0.1 116.81±0.03

Table 4.1: Results of the first set of measurements with paper inside the Styrofoam
container. N denotes the measurement number and I the current driven through the
heater. ”Circuit open” means the thermoelectric cooler is inactive and we measure ⌧1
while ”Circuit closed” means the thermoelectric cooler is active and we measure ⌧2.

As can be seen, the higher the temperature gradient �T , the lower ⌧1,2 seem to be,
indicating a first temperature dependence of ⌧1,2. It can also clearly be seen that
⌧2 < ⌧1, which makes sense considering the small copper body should cool down more
quickly when the thermoelectric cooler is cooling.
Another indication that ⌧1,2 depend on temperature is the fact that ⌧ heating and ⌧
cooling do not share the same values, as mentioned in section 2.1.
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An example of a fit can be seen in figure 4.1. The uncertainties on �T and ⌧
were obtained by taking the square root of the corresponding diagonal entry on the
covariant matrix [20]. In all of the fits used to obtain the data in table 4.1, the value
of the correlation coe�cient R2 is above 0.999, indicating a good quality of the fits.

(a) Fit of the data during heating.

(b) Fit of the data during cooling.

Figure 4.1: An example of fit functions of the measured data. In this case, the fits
correspond to measurement 8.0 with an open circuit.
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The resulting figures of merit ZT can be seen in table 4.2.

N Tavg[K] ZT cooling ZT heating
1.0 299.19±0.01 0.378 0.348
2.0 301.93±0.1 0.387 0.353
3.0 305.95±0.01 0.379 0.353
4.0 308.35±0.01 0.383 0.355
5.0 311.54±0.02 0.385 0.363
6.0 314.97±0.02 0.400 0.359
7.0 318.38±0.02 0.383 0.355
8.0 321.74±0.03 0.384 0.334

Table 4.2: Results of ZT obtained through the measurements described in table 4.1
using equation (2.33).

The temperature Tavg was obtained from the fact that these values of ZT are aver-
aged over the temperature range of the exponential fit. Its value was computed using
Tavg = TC + �T/e and the uncertainty of ZT was computed using the error propa-
gation law for standard deviations, however, it was too small to include. As can be
seen, no convincing temperature dependence can be seen from table 4.2, which might
imply that this method of determining ZT is only good for a rough estimation of the
figure of merit. Fitting a regression line through the data seen in table 4.2 in order
to try and determine a temperature dependence of ZT yields a very poor quality fit,
hence it is not worth showing here.

If we naively assume that ZT is thus temperature independent, we can compute the
mean:

ZTC = 0.385± 0.006 (4.2)

ZTH = 0.353± 0.008 (4.3)

where the uncertainty is the standard deviation.
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The second set of measurements with paper inside the Styrofoam container gave
results seen in table 4.3.

N I[A] �T [K] Circuit ⌧ heating [s] ⌧ cooling [s]
1.1 0.19 11.51±0.01 open 153.09±0.08 163.97±0.03
1.1 0.19 8.53±0.01 closed 115.34±0.1 118.02±0.03
2.1 0.25 20.10±0.1 open 154.56±0.08 163.95±0.03
2.1 0.25 15.24±0.01 closed 113.80±0.1 118.00±0.03
3.1 0.31 28.84±0.01 open 154.05±0.08 163.09±0.03
3.1 0.31 21.46±0.01 closed 111.95±0.09 117.30±0.03
4.1 0.34 37.59±0.01 open 152.73±0.09 163.00±0.04
4.1 0.34 28.09±0.02 closed 110.80±0.1 117.36±0.03
5.1 0.38 44.58±0.01 open 151.52±0.08 162.29±0.03
5.1 0.38 33.38±0.02 closed 111.07±0.1 117.25±0.03
6.1 0.42 52.93±0.02 open 149.86±0.09 161.97±0.04
6.1 0.42 39.42±0.02 closed 110.33±0.09 117.00±0.03
7.1 0.47 69.18±0.02 open 147.47±0.09 161.75±0.04
7.1 0.47 51.84±0.03 closed 109.83±0.09 117.12±0.04
8.1 0.50 73.67±0.02 open 145.68±0.08 161.38±0.04
8.1 0.50 55.39±0.03 closed 108.73±0.08 116.67±0.03

Table 4.3: Results of the second set of measurements, denoted with .1 after the mea-
surement number, with paper inside the Styrofoam container.

The resulting figures of merit ZT can be seen in table 4.4.

N Tavg[K] ZT cooling ZT heating
1.1 299.23±0.01 0.389 0.327
2.1 302.39±0.1 0.389 0.358
3.1 305.61±0.01 0.390 0.377
4.1 308.83±0.01 0.398 0.378
5.1 311.40±0.01 0.384 0.364
6.1 314.47±0.02 0.384 0.358
7.1 320.45±0.02 0.381 0.343
8.1 322.10±0.02 0.383 0.340

Table 4.4: Results of ZT obtained through the measurements described in table 4.1
using equation (2.33).

A resemblance of a temperature dependence can be seen here for ZT (cooling), espe-
cially if measurement 4.1 is ignored. There seems to be a slight downtrend for ZT
(cooling) as the temperature rises.
If we now additionally fit a regression line through the data seen in table 4.4, we get
an expression for the temperature dependence of ZT . Only ZT (cooling) has been
considered here and the result can be seen in figure 4.2.
The resulting fit function is as follows:

ZT = �5.264 ⇤ 10�4 ⇤ T + 0.551 (4.4)
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Figure 4.2: Fit function of ZT (cooling) with the data obtained from table 4.4. The
uncertainties on the data points are too small to be shown.

Expressing ZT analogue to equations (4.2) and (4.3), we get:

ZTC = 0.387± 0.005 (4.5)

ZTH = 0.356± 0.017 (4.6)

Equations (4.5) and (4.6) seem to be compatible with (4.2) and (4.3), showing good re-
producibility of the experiment. However, the fact that ZTC 6= ZTH is reason enough
to believe that ZT is dependent on temperature.

The results for the measurement set where there was no paper inside the Styrofoam
container should be di↵erent from the results mentioned above, considering the ther-
mal insulation is di↵erent. They can be seen in table 4.5.
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N I[A] �T [K] Circuit ⌧ heating [s] ⌧ cooling [s]
1.2 0.19 11.24±0.01 open 146.16±0.08 157.79±0.03
1.2 0.19 8.49±0.01 closed 107.13±0.09 113.78±0.02
2.2 0.25 18.69±0.01 open 144.15±0.08 155.49±0.03
2.2 0.25 14.07±0.01 closed 105.91±0.09 112.51±0.02
3.2 0.31 27.91±0.01 open 141.97±0.08 154.61±0.04
3.2 0.31 21.05±0.01 closed 105.53±0.09 112.61±0.02
4.2 0.34 32.67±0.01 open 140.44±0.08 153.95±0.04
4.2 0.34 24.28±0.01 closed 104.36±0.09 112.23±0.02
5.2 0.38 40.68±0.01 open 139.17±0.08 153.25±0.04
5.2 0.38 30.82±0.02 closed 103.43±0.09 112.06±0.02
6.2 0.42 48.73±0.02 open 138.24±0.08 152.49±0.04
6.2 0.42 37.12±0.02 closed 103.33±0.1 111.39±0.02
7.2 0.47 58.73±0.02 open 136.13±0.08 151.83±0.04
7.2 0.47 44.84±0.02 closed 102.27±0.09 111.19±0.03
8.2 0.50 67.72±0.03 open 133.59±0.09 151.28±0.04
8.2 0.50 51.57±0.03 closed 101.80±0.08 111.03±0.02

Table 4.5: Results of the second set of measurements without paper inside the Styro-
foam container, denoted with .2 after the measurement number.

It can immediately be seen that compared to the results where there was paper inside
the Styrofoam container (tables 4.1 and 4.3), the temperature gradients �T seem to
be smaller if there is no paper used. This is concluding evidence that there is con-
siderably less thermal insulation if there is no paper inside the Styrofoam container.
The time constants ⌧ are smaller as well, sharing the similarity with the case before
that the higher the temperature gradient, the smaller the time constant. What is
also noticeable is the fact that the higher the temperature gradient �T , the more the
values of the time constants di↵er from the measurement sets with paper inside the
Styrofoam container. This could imply that the case where there is no paper used
might only be accurate for small temperature gradients.

The corresponding values of figures of merit ZT can be seen in table 4.6

N Tavg[K] ZT cooling ZT heating
1.2 299.13±0.01 0.388 0.364
2.2 301.88±0.01 0.382 0.361
3.2 305.27±0.01 0.373 0.345
4.2 307.02±0.01 0.372 0.346
5.2 309.67±0.01 0.368 0.346
6.2 312.93±0.02 0.369 0.338
7.2 316.61±0.02 0.367 0.331
8.2 319.95±0.03 0.363 0.312

Table 4.6: Results of ZT obtained through the measurements described in table 4.1
using equation (2.33).

A clear decrease of ZT can be seen as the temperature rises, however, this is most
likely due to the fact that there is less thermal insulation than before. The loss of heat
is proportional to �T after all. The fact that ZT from measurement number 1.2 is
inside the error of margin of equations (4.5) and (4.2) supports the earlier statement
that this method could be used to estimate ZT for small temperature gradients. If
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we fit a regression line using the data from table 4.6 to determine the temperature
dependence of ZT (cooling) anyways, we obtain the following equation:

ZT = �8.553 ⇤ 10�4 ⇤ T + 0.636 (4.7)

The graphical result can be seen in figure 4.3 below.

Figure 4.3: Fit function of ZT (cooling) with the data obtained from table 4.6.

4.2 Determination of ZT using the second method

The second method for determining ZT is more sophisticated in a sense that the
temperature dependence can be shown directly using equation (2.43) in (2.33) as
described in section 2.2. To repeat equation (2.43), because it is critical to determining
ZT using the second method, it states that ⌧1,2 can be expressed as follows:

⌧1,2 =
TC � TH(t)

ṪH

(4.8)

The derivative of the temperature with respect to time ṪH has been obtained via nu-
merical derivation. In order to reduce the noise, only every 20th data point has been
used to obtain the derivation.
Only the process of cooling down has been considered for this method.

An example of a result of ⌧ obtained using equation (4.8) can be seen in figure 4.4.
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(a) Temperature dependent time constants ⌧ with open circuit.

(b) Temperature dependent time constants ⌧ with closed circuit.

Figure 4.4: Result of temperature dependent ⌧ for measurement number 8.1.
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At cool temperatures close to TH = 295K, it can be seen that the scattering has an
extremely wide range. This is most likely an artifact due to the numerical derivation
done in equation (4.8).
Nevertheless, a clear decrease of ⌧ can be seen as the temperature TH rises. The
combined results for measurements 1.1 to 8.1 can be seen in figure 4.5. No noticeable
di↵erence can be seen to the other set of measurements (measurement numbers 1.0 to
8.0), which is why I decided to not include their resulting figures here.

We can express the temperature dependence on ⌧ if we prune the data seen in figure
4.5 such that the initial scattering is not included and fit a regression line through the
remaining data. A good pruning point seems to correspond to all temperatures from
TH > 310K on. The resulting fits can be seen in figure 4.6.
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(a) Temperature dependent time constants ⌧ with open circuit.

(b) Temperature dependent time constants ⌧ with closed circuit.

Figure 4.5: Combined results of temperature dependent ⌧ for measurements number
1.1 to 8.1.
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(a) Temperature dependent time constants ⌧1 with open circuit, fitted with a linear regression
line.

(b) Temperature dependent time constants ⌧2 with closed circuit.

Figure 4.6: Fitted results of temperature dependent ⌧1,2 for measurements number 1.1
to 8.1. The grey area along the fit shows the confidence band, meaning it encloses the
area in which we can be 95% sure that it contains the true curve [21].
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The corresponding fit functions seen in figure 4.6 are as follows:

⌧1(T ) = �0.109 ⇤ T + 199.602± 0.870[s] (4.9)

⌧2(T ) = �0.083 ⇤ T + 145.848± 0.455[s] (4.10)

where the uncertainties have been obtained using the standard error of the estimate,
also known as the root mean square error [22]. The uncertainty on the time constant
with closed circuit ⌧2 is smaller than that of ⌧1, because the temperature TH is con-
siderably smaller when the thermoelectric cooler is active, meaning most of the initial
scattering is cut o↵. This can also be seen in figure 4.7 when considering the fact that
the scales of the x-axes are not the same in (a) and (b).

For the set of measurement 1.0 to 8.0 figures 4.6 (a) and (b) look almost identical
which is why only the actual fit functions will be included. The fit functions for the
other set of measurements are therefore as follows:

⌧1(T ) = �0.105 ⇤ T + 198.709± 1.013[s] (4.11)

⌧2(T ) = �0.097 ⇤ T + 150.417± 0.414[s] (4.12)

The temperature dependent ZT can now be computed using this data and equation
(2.33). Since this is the most important result of this thesis, the graphical results for
both sets of measurements of ZT have been included this time. The results can be
seen in figure 4.7.
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(a) Temperature dependent figure of merit ZT for the set of measurements 1.1 to 8.1.

(b) Temperature dependent figure of merit ZT for the set of measurements 1.0 to 8.0.

Figure 4.7: Temperature dependent ZT for both sets of measurements.
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The fit function from figure 4.7 (a) (measurements 1.1 to 8.1) is as follows:

ZT = �1.859 ⇤ 10�4 ⇤ T + 0.443± 0.006 (4.13)

For the other set of measurements (measurements 1.0 to 8.0) as seen in figure 4.7 (b),
the fit function is:

ZT = �2.730 ⇤ 10�4 ⇤ T + 0.471± 0.006 (4.14)

It can be seen that equations (4.13) and (4.14) agree fairly well with each other. For a
more accurate result, many more measurements would have to be done, however, this
would be out of scope for this bachelor thesis.

The measurement set without paper inside the Styrofoam container should be dif-
ferent from this. In section 2.2, the assumption was made that all heat flows from the
small copper body into the heat sink, implying perfect thermal insulation from the
environment. This leads to believe that ZT obtained from measurements 1.2 to 8.2
should be further away from the true ZT than the results obtained before. It will be
included anyways for the sake of completeness, the result can be seen in figure 4.8.

Figure 4.8: Temperature dependent ZT for the set of measurements 1.2 to 8.2, without
paper inside the Styrofoam container.

It can already be seen that ZT has lower values compared to before. The fit function
is as follows:

ZT = �4.438 ⇤ 10�4 ⇤ T + 0.505± 0.005 (4.15)

This is indeed a quite di↵erent result compared to equations (4.13) and (4.14).
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4.3 Comparison to standard method for measuring ZT

In this section, we will compare the figures of merit obtained in sections 4.1 and 4.2 to
the standard method for obtaining ZT , where ↵, k and RTE are measured separately
as described in section 3.4.
The result for the set of measurements 1.1 to 8.1 can be seen in table 4.7.

N �T [K] ↵[V/K] k[W/K] RTE [⌦]
1.1 11.51±0.01 0.00282±3⇤10�6 0.0314 0.190±0.003
2.1 20.10±0.01 0.00284±3⇤10�6 0.0321 0.200±0.003
3.1 28.84±0.01 0.00287±3⇤10�6 0.0327 0.201±0.003
4.1 37.59±0.01 0.00288±3⇤10�6 0.0330 0.208±0.003
5.1 44.58±0.01 0.00289±3⇤10�6 0.0336 0.212±0.003
6.1 52.93±0.02 0.00290±3⇤10�6 0.0337 0.218±0.003
7.1 69.18±0.02 0.00292±3⇤10�6 0.0346 0.230±0.003
8.1 73.67±0.02 0.00290±3⇤10�6 0.0346 0.233±0.003

Table 4.7: Results of ↵, k and RTE of the first set of measurements with paper inside
the Styrofoam container.

The rise of the Seebeck coe�cient ↵ with the temperature seems to be negligible
while the rise for the thermal conductivity k and the internal electrical resistance RTE

according to the temperature seem quite high in comparison.
The uncertainty on ↵ is the estimated error of the volt meter. The uncertainty on
k was obtained by the uncertainty estimation of the voltmeter and the uncertainty
on �T . k was obtained using equation (3.7) and its final uncertainty was obtained
from the error propagation law, however, it is too small to display here. The internal
electrical resistance of the thermoelectric cooler was obtained as described in the final
part of section 3.4. Since it was measured using a separate setup, it was not possible
to achieve the exact same temperature gradient as in the setup used to determine ↵
and k.
To solve this issue, RTE was fitted using a regression line. Afterwards TH according
to table 4.7 was used in the fit function to obtain the resistance values seen in the
last row of the table. Its error stems from the uncertainty of the estimate (root mean
square error).
The fit function for RTE is as follows:

RTE(T ) = 0.0007 ⇤ T � 0.0283± 0.0031[⌦] (4.16)

The graphical result of the internal electric resistance can be seen in figure 4.9.
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Figure 4.9: Temperature dependent RTE. The grey area now represents the uncer-
tainty of the estimation, as there are too few data samples for confidence bands to be
reliable.

Finally, we are able to compute ZT using the definition of itself as seen in equation
(1.3). The results can be seen in table 4.8:

N ZTTrue

1.1 0.412±0.006
2.1 0.407±0.006
3.1 0.405±0.006
4.1 0.403±0.006
5.1 0.398±0.006
6.1 0.396±0.005
7.1 0.391±0.005
8.1 0.389±0.005

Table 4.8: True values of ZT obtained through the standard method by measuring ↵,
k and RTE separately and using equation (1.3).

A clear decrease of ZTTrue can be seen with rising temperature gradient �T . The
error on ZT was obtained using the law of error propagation with the corresponding
uncertainties from table 4.7. In order to compare these results to tables 4.4 and 4.6
from section 4.1, where ZT (cooling) is obtained by extracting the time constants ⌧1,2
from the exponential decay of TH(t), we require a temperature dependence on ZTTrue

first in order to be able to determine ZTTrue at temperature Tavg from table 4.4. The
temperature dependence on ZTTrue is once again obtained by fitting a regression line
using the data of table 4.8. The resulting fit function is as follows:

ZTTrue = �3.337 ⇤ 10�4 ⇤ T + 0.514 (4.17)
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The graphical result can be seen in figure 4.10.

Figure 4.10: Temperature dependent ZTTrue obtained by measuring ↵, k and RTE

separately.

Thus, we can use equations (4.17) and (4.7) at the temperatures Tavg seen in table 4.4
in order to directly compare the true values of ZT , ZT obtained by using the first new
method with paper inside the Styrofoam container and lastly, ZT obtained by using
the first new method without paper inside the Styrofoam container (equation (4.7)).
The comparison can be seen in table 4.9.

Tavg ZTTrue ZT4.4 ZT4.7

299.23±0.01 0.414±0.01 0.389 0.380±0.01
302.39±0.1 0.413±0.1 0.389 0.377±0.1
305.61±0.01 0.412±0.01 0.390 0.375±0.01
308.83±0.01 0.411±0.01 0.398 0.372±0.01
311.40±0.01 0.410±0.01 0.384 0.370±0.01
314.47±0.02 0.409±0.02 0.384 0.367±0.02
320.45±0.02 0.407±0.02 0.381 0.362±0.02
322.10±0.02 0.407±0.02 0.383 0.361±0.02

Table 4.9: True values of ZT from equation (4.17) compared to the values of ZT
obtained by table (4.4) (with paper inside Styrofoam container) and equation (4.7)
(without paper inside Styrofoam container).

It can be seen that these values of ZTTrue do not agree with the values of ZT obtained
via the first new method. They are too low, especially for the case where there was
no paper inside the Styrofoam container.
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Now we can compare the standard method for determining ZT to the second new
method for determining ZT as seen in section 4.2. While the slope of equation (4.17)
seems to agree reasonably well with equations (4.13) and (4.14), the intersection point
seems quite a bit higher here. It is very likely that the temperature dependence of
ZTTrue is in fact not linear. This depends on the thermoelectric material [2].

Perhaps we can get a more conclusive comparison if we insert the temperatures for
measurements 1.1 to 8.1 into the fit functions of ZT for the second method (equations
(4.13) and (4.14)) and then compare these values to the values of ZTTrue from table
4.8. The comparison can be seen in table 4.10 below.

N ZTTrue ZT4.13 ZT4.14

1.1 0.412±0.006 0.386±0.006 0.387±0.006
2.1 0.407±0.006 0.384±0.006 0.385±0.006
3.1 0.405±0.006 0.383±0.006 0.383±0.006
4.1 0.403±0.006 0.381±0.006 0.383±0.006
5.1 0.398±0.006 0.380±0.006 0.380±0.006
6.1 0.396±0.005 0.378±0.006 0.376±0.006
7.1 0.391±0.005 0.375±0.006 0.372±0.006
8.1 0.389±0.005 0.374±0.006 0.370±0.006

Table 4.10: True values of ZT from table 4.8 compared to the values of ZT obtained
by equation (4.13) and (4.14).

We notice a similarity with the first new method of obtaining ZT , which is that the
second new method for obtaining ZT is closer to the true value of ZT the higher the
temperature gradient. This statement only holds in the range of temperature gradients
of our measurements, since the true temperature dependence most likely is not simply
linear as mentioned before. It is not obvious what the true temperature dependence
of ZT looks like for temperature gradients greater or smaller than those which appear
in our measurements.

The values of ZTTrue have also been measured for the case where there is no pa-
per inside the Styrofoam container (measurements 1.2 to 8.2). The results of ↵, k and
RTE can be seen in table 4.11.

N �T [K] ↵[V/K] k[W/K] RTE [⌦]
1.2 11.24±0.01 0.00282±3⇤10�6 0.0341 0.189±0.003
2.2 18.69±0.01 0.00283±3⇤10�6 0.0351 0.193±0.003
3.2 27.91±0.01 0.00287±3⇤10�6 0.0355 0.198±0.003
4.2 32.67±0.01 0.00287±3⇤10�6 0.0358 0.201±0.003
5.2 40.68±0.01 0.00290±3⇤10�6 0.0366 0.206±0.003
6.2 48.73±0.02 0.00290±3⇤10�6 0.0372 0.211±0.003
7.2 58.73±0.02 0.00292±3⇤10�6 0.0379 0.216±0.003
8.2 67.72±0.03 0.00294±3⇤10�6 0.0385 0.222±0.003

Table 4.11: Results of ↵, k and RTE of the set of measurements without paper inside
the Styrofoam container.

The resulting values of ZTTrue are again obtained by using the definition of ZT from
equation (1.3) and can be seen in table 4.12.
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N ZTTrue

1.2 0.404±0.006
2.2 0.391±0.006
3.2 0.390±0.006
4.2 0.380±0.006
5.2 0.385±0.006
6.2 0.380±0.005
7.2 0.371±0.005
8.2 0.382±0.005

Table 4.12: True values of ZT obtained through the standard method by measuring
↵, k and RTE separately and using equation (1.3).

If we now fit a regression line for the data in table 4.12 in order to compare it to the
second method for determining ZT , we obtain the following temperature dependence
of ZTTrue:

ZT = �2.721 ⇤ 10�4 ⇤ T + 0.475 (4.18)

The graphical result can be seen in figure 4.11.

Comparing equation (4.18) to the first method for determining ZT (table 4.4 and
equation (4.7)) by using the temperatures Tavg as seen in table 4.4, we arrive at a
comparison as seen in table 4.13 below.

Tavg ZTTrue ZT4.4 ZT4.7

299.23±0.01 0.394±0.01 0.389 0.380±0.01
302.39±0.1 0.393±0.1 0.389 0.377±0.1
305.61±0.01 0.392±0.01 0.390 0.375±0.01
308.83±0.01 0.391±0.01 0.398 0.372±0.01
311.40±0.01 0.390±0.01 0.384 0.370±0.01
314.47±0.02 0.389±0.02 0.384 0.367±0.02
320.45±0.02 0.388±0.02 0.381 0.362±0.02
322.10±0.02 0.387±0.02 0.383 0.361±0.02

Table 4.13: True values of ZT from equation (4.18) compared to the values of ZT
obtained by table (4.4) (with paper inside Styrofoam container) and equation (4.7)
(without paper inside Styrofoam container).

As can be seen, the values of ZTTrue seem to agree very well with the values of ZT4.4

which was obtained from the process of cooling down. The values of ZT4.7, which were
obtained from the measurement set without any paper inside the Styrofoam container
are still quite di↵erent from ZTTrue.

For the second new method, comparing equation (4.18) to (4.13) and (4.14), we see
that they seem to be very similar. Especially remarkable is the fact that equation
(4.18) is almost exactly the same as equation (4.14). However, equation (4.18) seems
very di↵erent to equation (4.15) in which ZT which was obtained from the data where
there was no paper inside the Styrofoam container.
A further comparison can be done again if we use the temperatures used to obtain
ZTTrue for table 4.11 in equations (4.13), (4.14) and (4.15). The comparison can be
seen in table 4.14 below.
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N ZTTrue ZT4.13 ZT4.14 ZT4.15

1.2 0.404±0.006 0.386±0.006 0.387±0.006 0.369±0.005
2.2 0.391±0.006 0.385±0.006 0.385±0.006 0.366±0.005
3.2 0.390±0.006 0.383±0.006 0.383±0.006 0.362±0.005
4.2 0.380±0.006 0.382±0.006 0.382±0.006 0.360±0.005
5.2 0.385±0.006 0.381±0.006 0.379±0.006 0.356±0.005
6.2 0.380±0.005 0.379±0.006 0.377±0.006 0.352±0.005
7.2 0.371±0.005 0.377±0.006 0.374±0.006 0.348±0.005
8.2 0.382±0.005 0.376±0.006 0.372±0.006 0.344±0.005

Table 4.14: True values of ZT from table 4.11 compared to the values of ZT obtained
by equation (4.13), (4.14) and (4.15).

As can be seen, the ZT obtained from the data where there was paper inside the
Styrofoam container (equations (4.13) and (4.14)) are within the error of margin of
ZTTrue for all measurements except measurement 1.2 which had the lowest tempera-
ture gradient.
The values of ZT4.15 do not fit into this at all, they are quite di↵erent from the other
values of ZT . This makes sense, considering we assumed that all heat exclusively flows
from the small copper body to the heat sink in section 2.2. More heat is lost to the
environment in the case of ZT4.15 due to worse thermal insulation.

Figure 4.11: Temperature dependent ZT , without paper inside the Styrofoam con-
tainer, obtained by measuring ↵, k and RTE separately.

The fact that ZTTrue obtained from the data with paper inside the Styrofoam con-
tainer is further away from the ZT obtained via the new methods than the ZTTrue

obtained without paper inside the Styrofoam container might stem from the fact that
the thermal conductivity k changes a lot depending on whether there is paper inside

54



the Styrofoam container or whether there is not. It might be that by adding paper
into the Styrofoam container, we falsify the true value of ZTTrue due to the change
of k. The opposite is true for the values of ZT obtained via the second method, as
described in section 2.2. The more thermal insulation we have, the closer the values
of ZT should be to ZTTrue. This might explain this discrepancy.

As a final comparison, the fit functions of all figures of merit ZT which were dis-
cussed in this section will be shown in figure 4.12 below.
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Figure 4.12: Comparison of all fits of ZT which were discussed above. The legend refers
to the corresponding method. The line is dashed for the measurement sets where there
was no paper inside the Styrofoam container. The red dashed line (equation (4.18))
is the fit for the values of the true ZT without paper inside the Styrofoam container.
This is the reference for the other values of ZT . The black line (equation (4.4)) is the
first new method for determining ZT , with paper inside the Styrofoam container. It
can be seen that this is quite o↵ from the true values of ZT (in red). The brown dashed
line (equation (4.7)) is the first new method for determining ZT , without paper inside
the Styrofoam container. This fit is the furthest away from the true values of ZT . The
purple line (equation (4.13)), is the second new method for determining ZT . It is the
first set of measurements with paper inside the Styrofoam container. As can be seen,
it is very close to the true values of ZT . The cyan colored line (equation (4.14)) is also
the second new method for determining ZT . It is the second set of measurements with
paper inside the Styrofoam container. This one is the closest one to the true value of
ZT , having almost the same slope but a slightly di↵erent o↵set. The green dashed
line (equation (4.15)) is the second new method for determining ZT without paper
inside the Styrofoam container. It is quite far away from the true values of ZT . The
blue line (equation (4.17)) is the ”true” value of ZT with paper inside the Styrofoam
container. It is most likely not the actual true ZT for reasons discussed in this section.
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4.4 Determination of ZT using the third method

This brings us to the last new method for obtaining ZT . It is described in section 2.3
and ZT is obtained by using equation (2.53). To repeat this equation, it states the
following:

ZT =
Reff

RTE

� 1 (4.19)

The e↵ective electrical resistance is obtained by simply driving a current I through the
thermoelectric cooler and measuring the resulting voltage Veff . Reff is then obtained
as follows:

Reff =
Veff

I
(4.20)

This has only been done for one current since a measurement for this method takes a
very long time. The current driven through the thermoelectric cooler and the corre-
sponding measured voltage Veff are as follows:

I = 0.0981A (4.21)

Veff = 0.0313V (4.22)

Reff = 0.3191⌦ (4.23)

Using equation (1.1) to convert the voltage to a temperature (assuming ↵ ⇡ 0.0028V/K)
we get:

TH � TC =
Veff

↵
(4.24)

TH =
Veff

↵
+ TC (4.25)

TH = 307.52K (4.26)

In order to then determine the corresponding RTE, the temperature obtained above
can be inserted into equation (4.16). We get:

RTE = 0.187⌦ (4.27)

Finally, we can insert all the necessary values into equation (4.19) to obtain ZT :

ZT = 0.706 (4.28)

This value of ZT is very di↵erent from any of the values obtained before, thus, this
method is unsuited for the determination of ZT . My assumption is that it is very
hard to get a precise measurement using this experimental setup as the current driven
through the thermoelectric cooler and the corresponding measured voltage still kept
fluctuating even after waiting for multiple hours.
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As a bonus, I decided to check whether RTE can be obtained using equation (2.55).
To repeat it, it states that RTE can be expressed as follows:

RTE = Reff

⌧2
⌧1

(4.29)

Using the temperature obtained in equation (4.26), it is possible to determine the
corresponding ⌧1 and ⌧2 using equations (4.9) and (4.10). We get:

⌧1 = 166.082s (4.30)

⌧2 = 120.234s (4.31)

For Reff , I decided to compute it from equation (2.52) instead of taking the value
which was measured directly as it was deemed too unprecise. We get:

Reff = RTE(1 + ZT ) (4.32)

Inserting equations (4.28), (4.30) and (4.31) into (4.29), we get:

RTE = 0.258⌦ (4.33)

This is quite di↵erent from RTE obtained in equation (4.27), although I believe that
if Reff had a higher precision, it would work out quite well.
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Conclusion

It was shown in theory and experimentally that there are two new methods for ef-
fectively measuring the figure of merit ZT in one single experiment. Both methods
require the same setup, namely a temperature gradient between the body which is to
be cooled and the heat sink. After a temperature gradient has been established, a
measurement of the temperature decay has to be taken once when the thermoelectric
cooler is inactive and once when it is active. This will yield two di↵erent time con-
stants with which it is possible to determine the figure of merit ZT .

The first new method for determining ZT seems to agree reasonably well with the
values of ZTTrue, obtained via the standard method for measuring ZT . However, only
the measurements taken during the cooling process and with su�cient thermal insula-
tion seem to agree with ZTTrue. The fit function of ZT obtained via the first method
generally seem too low as seen in figure 4.12.

The second new method for determining ZT seems not only more accurate than the
first new method, but it also shows a direct temperature dependence. The results are
within the margins of error compared to ZTTrue, except for the measurement with the
lowest temperature gradient. Again, su�cient thermal insulation is necessary for the
results to be accurate.

The third new method for determining ZT seems impractical and inaccurate, although
I believe that it could still be done by having much more precise measurements.
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