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Abstract
In this thesis, I have performed detailed transport measurements based on a series of
high entropy alloy (TaNb)x(HfZrTi)1−x thin films. We expected to find the most optional
composition for further applications. By measuring the superconducting transitions in
various magnetic field, we have determined the composition dependence of the super-
conducting parameters such as the transition temperature, the upper critical field, the
penetration depth, the coherence lengths and some more. As result the highest tran-
sition temperature was obtained with x = 0.5 whereas the highest upper critical field
was found at x = 0.3. Considering these films can be deposited at room temperature in
very large scales and are quite robust as high entropy alloys, they are perfectly suitable
for superconducting devices in harsh environments, such as superconducting nanowire
single-photon detectors.

Abstract German
In dieser Arbeit habe ich elektrische Transportmessungen an dünnen Filmen der Hoch-
Entropie Lebierung (TaNb)x(HfZrTi)1−x durchgeführt mit dem Ziel die optimale Zusam-
mensetzung für verschiedene Anwendungen zu finden. Dazu wurde der Übergang in
den supraleitenden Zustand in verschiedenen Magnetfeldern gemessen. Aus diesen Re-
sultaten konnte ich die verschiedenen supraleitenden Parameter wie die magnetische
Eindringtiefe, die Kohärenzlänge, das oberes kritisches Feld und einige mehr abhängig
von der Zusammensetzung berechnen. Die höchste kritische Temperatur wurde für die
Komposition mit x = 0.5 gemessen, das höchste obere kritische Feld hingegen wurde
bei x = 0.3 gefunden. Da diese Filme bei Raumtemperatur in vergleichsweise grossen
Massstab herrgestellt werden und als Hoch-Entropie Legierung ziemlich robust sind,
können sie sehr gut für supraleitende Komponenten unter schwierigen Bedingungen, wie
z.B. in einem "Superconducting nanowire single-photon detector" kurz SNSPD, einge-
setzt werden.
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1 Introduction
Superconductivity is an interesting phenomena in physics which is still not completely
understood. Its phenomenology in the superconducting phase (below a certain transi-
tion temperature) consists of two parts: First, the resistivity of the material is exactly
zero, second, the magnetic field is expelled from the bulk of the material (Type I) or
channelled into thin flux tubes (Type II) called the Meissner-Effect.
There are different kinds of superconductor conventional ones with quite low transition
temperatures, which can be described within BSC theory, and unconventional ones, e.g.
high-temperature superconductors as cuprates, with much higher transition tempera-
ture, which are not yet understood completely.
In this thesis thin films of (TaNb)x(HfZrTi)1−x which is a so called High Entropy Alloy
are analysed. They have quite a low transition temperature around 7K. The interesting
thing about this material is that the superconductivity is very robust. Jing Guo et al. [1]
recently reported in a paper that this compound is superconducting in the whole range
of pressure from 0Pa up to 190GPa. For higher pressures the limitation was the break
down of the crystal structure of the high entropy alloy which makes it interesting to
examine thin amorphous films to try to avoid this problem. Nowadays, often Niobium-
Titanium alloys are used for superconducting magnets for example in MRI devices. So
the recently discovered superconductivity in the high entropy alloy (TaNb)x(HfZrTi)1−x
is of some interest to be further examined. Especially after the discovery of the very
robust superconductivity against high pressure.
As first experiments on these thin amorphous films the resistivity was measured for
different magnetic fields between 1.9K and 10K. With these results the transition tem-
perature, upper critical field, coherence length, penetration depth, energy gap, diffusion
constant, density of states at Fermi level and the Ginzburg Landau parameter were de-
termined. Afterwards the results will be studied to find some trends for the composition
with the most stable superconducting state.
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2 Theory
2.1 High-entropy alloys
2.1.1 Definition

An alloy is sometimes described as a "mixture of metals" [2] which is not always the case.
In general, an alloy is a mixture of a principal element (a metal with a concentration of
up to 90% or more) with one or more other chemical elements that do not have to be
metals. In contrast a high-entropy alloy [3] is a mixture of 5 or more principal elements
which all have a concentration between 5% and 35% and possibly some minor elements
with concentrations below 5%.
The principle behind these alloys is to maximize their mixing entropy as in solid phases
thereby also the stability is enhanced with respect to the metallic compounds. From
thermodynamics the mixing entropy (i.e. the entropy of the high entropy alloy with
respect to the pure elements) for one mole can be calculated:

∆Sconf = −R
n∑
i=1

Xi ln(Xi) (2.1)

where Xi is the molar fraction of the ith compound. The highest entropy and thereby
the highest stability is reached with an equiatomic alloy. As illustrated in Figure 1 the
atoms in a HEA are randomly arranged on a crystal lattice. The crystal structures are
often simple ones, such as BCC but have some lattice distortions, as the atoms with
different sizes are randomly put on the lattice points. This can then cause different
strains between the atoms.

Figure 1: Five component high entropy alloy with similar atom sizes in equiatomic ratio.
Figure (A) shows an ordered alloy with five parts all consisting of one kind of
atom and (B) shows the high entropy alloy with atoms put randomly on the
lattice.

High entropy alloys are quite a new discovery, first experiments were done in the early
2000’s. They seem to have several interesting properties and have therefore often been
examined during the last years. The properties of an alloy arise from the interaction
between the constituents and have therefore first to be examined. Further, they also
have some highly tunable properties that make them interesting for applications. There
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are thousands of possibility to construct such high entropy alloys among which we find
many superconductors.

The high-entropy alloy examined in this paper consists of five different elements: Nio-
bium, Tantalum, Titanium, Zirconium and Hafnium. The concentration considered will
be of the form: (TaNb)x(HfZrTi)1−x. All five elements are conventional superconductors
(so they are described by BCS) and type I, except from Niobium which is type II, with
different transition temperatures [4, 5]:

• Niobium: Tc ≈ 9.3K, type II superconductor

• Tantalum: Tc ≈ 4.5K, type I superconductor

• Titanium: Tc ≈ 0.4K, type I superconductor

• Zirconium: Tc ≈ 0.2K, type I superconductor

• Hafnium: Tc ≈ 0.5K, type I superconductor

2.1.2 Properties of (TaNb)x(HfZrTi)1−x

The superconductivity in this alloy was first examined in 2014 in a paper by P. Koželj
et al. [6]. They did some transport measurement on the alloy Ta34Nb33Hf8Zr14Ti11 and
found a transition temperature of Tc = 7.3K.
Later, Fabian von Rohr et al. [7] further examined the alloy on a BCC lattice and
found that it shows properties of simple crystalline intermetallics as well as the ones of
amorphous materials.
Afterwards, Jing Guo et al. [1] did some further measurements on this alloy. They used
the composition (TaNb)0.67(HfZrTi)0.33 and found that the superconducting state is very
robust against pressure. The transition temperature at ambient pressure was around
7.8K, increased up to 10K at around 60GPa and was still around 9K at 190.6GPa which
is comparable with the pressure of the outer core of the earth. For higher pressure it
could not be examined if the HEA is still superconducting as the crystal was broken
above this pressure. So it is not known if the superconductivity would be even more
robust. This behaviour of a superconductor is quite unusual and is assumed to occur
because of the stable crystal structure of this high entropy alloy.

2.2 Superconductivity
The phenomenology and theory about superconductivity are summarized from the fol-
lowing books and lecture notes: [8, 9, 10, 11, 12, 13]
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2.2.1 Phenomenology of the superconducting phase

There exist two different types of superconductors:

• Type I superconductors: These are quite well understood nowadays and fully de-
scribed by the BCS-theory. Typical examples are most of the elementary elements
that are superconducting, as Tantalum.

• Type II superconductors: This type is still not fully understood as most of them
are unconventional and contains most of the high temperature superconductors,
as cuprates. Other examples are alloys or hight entropy alloys as discussed in this
paper.

As the high entropy alloy (TaNb)x(HfZrTi)1−x is a type II superconductor, the theory
will mainly concentrate on this type.

Critical temperature

The critical temperature Tc is the most widely known critical point of the superconductor
below which the sample enters the superconducting phase. In this phase two main effects
occur:

i) the resistance immediately drops to 0Ω

ii) the magnetic field is fully expelled from the bulk in type I superconductors called
Messner-Ochsenfeld effect or tunnelled into thin flux tubes and thus going into a
vortex phase in type II superconductors

Both of these properties are reversible. But the transition temperature is not the only
critical point in a phase diagram of a superconductor. They further have a critical
magnetic field and a critical current.

Figure 2: A typical phase diagram for a type I (left) and type II (right) superconductor
[14]
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Critical magnetic field

The superconducting transition temperature not only depends on the material but also
on the magnetic field which is applied. By applying higher magnetic fields H to the
superconductor the critical temperature is lowered. But if the field gets stronger, it
will overcome the critical field (H > Hcrit). Thereby the material will no longer be
superconducting and undergoes a transition to a normal metallic or insulating state. As
above also the superconducting state is reversible, hence by lowering the magnetic field,
the material will re-enter the superconducting phase.

Meissner-Ochsenfeld effect and vortex phase

Now we have to distinguish between type I and type II superconductors. They have
different phase diagrams as shown in Figure 2.

First we have a look at the effect in type I superconductors if they are placed in mag-
netic fieldsH, called the Meissner-Ochsenfeld effect. At room temperature, in the normal
state, the magnetic field enters the superconductor (Figure 3). If the temperature is low-
ered below Tc at the transition, the magnetic field outside the sample changes abruptly
and inside the superconductor it is equal to zero, so the material is in the Meissner state.
By enhancing the magnetic field above the critical field Hc, it can penetrate through the
sample and the superconducting state is destroyed. Again this process is reversible, that
means by lowering the magnetic field the sample returns into the Meissner state and is
superconducting again.

Figure 3: Illustration of the Meissner effect. In (a) the situation above Tc where the field
penetrates the sample, (b) shows the superconducting state with zero field
inside the superconductor and (c) the state above the critical field where the
field again enters the superconductor.
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This implies that in the superconducting phase, the sample is except from being a perfect
conductor also a perfect diamagnet, which can be seen by looking at the susceptibility.
The magnetic field inside the sample is equal to zero: B = µ0(H + M) = 0. Hence
the magnetisation is minus the magnetic field: M = −H. Looking at the susceptibility:
χ = M/H = −1, we see the property of a perfect diamagnet.
However, this is not completely the case. The magnetic field can actually penetrate the
sample over a small distance, called the penetration depth λ. In thick samples where
λ << d this does not matter but for thin films where probably λ > d the Meissner effect
cannot be observed: We will have a closer look at this in the next section.

For the type II superconductors we have a slightly different behaviour when applying
magnetic fields. As in type II superconductors also these first enter the Meissner state
but above a lower critical field Hc1 the sample enters the vortex phase. This means that
the magnetic field inside the samples is tunnelled into thin flux tubes (Figure 4).
So in this case, applying a magnetic it will not be fully expelled from the bulk but above
the lower critical field Hc1 , the first vortex will enter the superconductor and tunnel
through. By enhancing the magnetic field towards the upper critical field Hc2 , the
number of vortices increases. At the moment when the upper critical field is reached,
the magnetic field will normally enter the sample and the superconducting phase is
destroyed. As before, lowering the magnetic field will reconstruct the superconducting
phase with the vortices.

Figure 4: Illustration of the vortex phase depending on the magnetic field strength

Critical current

A different critical quantity is the critical current Ic of the superconductor, which is
closely related to the critical field Hc. Applying a current on a superconducting sample
will always produce a self-induced magnetic field. Increasing the current this self-induced
field will be higher than the critical field and the superconducting state is destroyed.
If, in addition, the superconductor is placed in an external field, this critical current will
be lower because the sum of the external and the self-induced field has to be smaller than
the critical field. But we can circumvent this problem by taking alloys whose critical
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current is determined by the lattice and homogeneities that will allow to create stronger
superconductor magnets.

2.2.2 Theoretical aspects

Long time after the discovery of superconductivity in some materials a first microscopic
theory about this phenomena was found by Bardeen, Cooper and Schrieffer. At low
temperature, there occurs an attractive force between electrons which overcomes the
repulsive Coulomb interaction and two electrons condensate to a Cooper pair. These
Cooper pairs are bosonic in behaviour and can therefore go to lower energy. This can
sometimes lead to a macroscopic occupation of a single state what would clearly contra-
dict the Pauli Principle.

BCS theory

The Bardeen–Cooper–Schrieffer [15] theory (short BCS theory) can be applied to so
called conventional superconductors but can be generalized to also be applicable to un-
conventional superconductivity.

This theory is based on the building of electron-electron pairs, so called Cooper-pairs.
These pairs can only exist if there is an effective attraction between them, which means
that except from the Coulomb repulsion there has to be an attractive force. In the
standard BCS, i.e. for conventional superconductors, this force is mediated by the
phonons. To understand this attractive force we consider a lattice with one ion on each
lattice site and two electrons in this lattice. The ions are not fixed at the lattice point
but can be deflected from the equilibrium position or oscillate. Because of the negative
charge of the electron, the nearby ions will be attracted and an island of positive charge
will occur as shown in Figure 5.

Figure 5: Polarisation of the lattice for attractive interaction between Cooper pairs
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This positive polarisation of the lattice will attract the negatively charged second elec-
tron and vice versa. So the electrons seem to attract each other. Nevertheless, this
process works only at sufficiently low velocity of the electrons, otherwise, the lattice
cannot be polarized over a long enough time scale to attract the second electron, which
is also the reason for low transition temperatures and non superconducting materials.
Further, also the masses of the ions have an influence on the polarization of the lattice.
For heavier ions the polarization is smaller what results a lower transition temperature.
All these explanations are only qualitative and cannot be used for quantitative calcula-
tions.

These Cooper pairs are only built as their formation lowers the ground state energy of
the material. If we again look at our first electron now travelling through the lattice,
it will have left behind a deformation of the lattice. Now, there are two possibilities
how the second electron can propagate inside the polarized field, lowering the energy of
the system. Either it can follow, which would imply that both of them have the same
momentum p = ~k. This superposition can then be seen as a new particle, called an
electron pair with momentum 2p. Or the second possibility, they will build a Cooper
pair where the second electron has opposite momentum p1 = −p2. In this case the
total momentum of this quasiparticle will be p = 0. The two electrons in the Cooper
pair must have different spin polarisations (to ensure that the wavefuction of the Cooper
pair is antisymmetric) and can therefore be written as {k ↑,−k ↓}. More general, if the
Cooper pair is not static as in the ground state T = 0K but moving in the lattice, i.e.
conducting, it will have the form:

{k + K ↑,−k + K ↓} (2.2)

As we can see, this pair has then a total spin of S = 0, so it follows the Bose-Einstein
statistic and does not obey the Pauli-Principle as single electrons would. We have already
seen that these Cooper pairs can only exist at low enough energies where the attrac-
tive phonon-electron interaction overcomes the repulsive electron-electron interaction.
A further limitation is the BSC-coherence length ξ0 which is a measure for the mean
expansion of a Cooper pair and also defines the distance over which Cooper pairs can be
built. Further, Cooper-pairs only exist near the Fermi surface in a small energy range ~ω.

The formation of Cooper pairs opens a gap ∆ in the energy dispersion which makes the
superconducting state energetically favourable (Figure 6). To excite a Cooper pair into
a quasiparticle above this gap at least an energy of 2∆ is needed. But they can also be
broken by thermal excitation and as the density of Cooper pairs ns is proportional to
∆2 we know that for T → Tc we have ∆→ 0.
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Figure 6: Gap in the normalized density of states of the quasiparticles in a superconduc-
tor

Within BCS-Theory we find a simple formula for the transition temperature:

Tc = 1.13~ωD
kB

exp
(
− 1
Nn(εFV )

)
(2.3)

As the Debye frequency depends on the mass, one also finds that the lower the mass, the
higher the transition temperature can get. The second great result from the BCS theory
is the relation between the gap at zero temperature and the transition temperature:

2∆(T = 0) = 3.5kBTc (2.4)
Cooper pairs can also occur above Tc because of thermal fluctuations but they only exist
over a short time and localized. So there are short superconducting islands that enhance
the conductivity but cannot turn the material superconducting.

All this was about conventional superconductors. If we now want to turn to uncon-
ventional ones, the main difference is that the attractive interactions do not come from
the phonon-electron interaction but are mediated in a different way. This leads to a k
dependent gap with nodes at some points or lines where the gap is closed.

London Theory

By looking at a superconductor as a macroscopic system one can actually show the
perfect diamagnetism using the equation of motion of en electron with mass m, velocity
v and charge e in an electrical field which reads mv̇ = eE. With the number density
n of electrons one can write the current density as J = nev. Combining these, we can
find an equation for the electrical field E = m

ne2 J̇ . Using the two Maxwell equations:

∇×E = −∂B

∂t
(2.5)

∇×B = µ0J (2.6)
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one finds the differential equation:

∇2Ḃ = ne2µ0

m
Ḃ = 1

λ2 Ḃ (2.7)

where we have defined the London penetration depth as λ2 = m
ne2µ0

having dimension of
a length. The solution of this equation is then given by:

Ḃ(x) = Ḃ(0) exp
(
−x
λ

)
(2.8)

So our λ can clearly be seen as the depth inside the superconductor where the magnetic
field can change. For x >> λ this equation will result in Ḃ(x) = 0 which means
that inside the superconductor the magnetic field is constant. The phenomenological
Meissner effect would imply that it is constant equal to zero. Therefore, London stated
that superconductivity arises from superelectrons with density ns and found the following
two equations known as the London equations:

E = µ0λ
2
sJ̇ (2.9)

µ0λ
2
s∇× J + B = 0 (2.10)

The first London equation 2.9 which is the same as the equation of motion for a perfect
conductor and the second London equation 2.10. Using B = ∇×A in the gauge where
∇ ·A = 0 this leads to µ0λ

2
sJ + A = 0. In the same way as above using the Maxwell

equation one arrives at:
∇2B = 1

λ2
s

B (2.11)

with the solution:
B(x) = B(0) exp

(
− 1
λs

)
(2.12)

where λs is defined as
λ2
s = m∗

nse∗
2µ0

. (2.13)

where the star indicates the renormalized mass and charge of the superelectrons. This
result exactly explains the Meissner effect that for x >> λ the magnetic field inside the
superconductor is zero with an additional fact that inside the penetration depth x < λ
the field can enter the superconductor but will decay exponentially as shown in Figure 7.

The experimental measured temperature dependence of the penetration depth can be
approximated by:

λ(T ) = λ(0)
[
1−

(
T

Tc

)4]−1/2

(2.14)

Within the BCS theory the following formula was found:

λ(T ) = λ(0)
∆(T ) tanh

(
∆(T )
2kBT

)
∆(0)

1/3

(2.15)
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which actually describes the dependence more exactly. Near Tc both formula represent
the same behaviour:

λ(T ) = λ(0)
[
2
(

1− T

Tc

)]−1/2
(2.16)

Figure 7: Decay of the magnetic field inside a superconductor and London penetration
depth

Further, from the penetration depth also the critical current can be determined, above
it, the superconducting state will be destroyed. By differentiating the formula for the
magnetic field inside the sample with respect to x we obtain:

J(x) = dH

dx
= dB

dx

1
µ0

= −B(0)
λµ0

exp
(
− 1
λs

)
(2.17)

Inserting for the magnetic field B(0) the critical magnetic field one obtains Jc = Hc
µ0λ

for
the maximal current at the surface x = 0. For values J > Jc all Cooper pairs are broken
and superconductivity is destroyed.

Ginzburg-Landau Theory

The Ginzburg-Landau also known as GLAG (Ginzburg Landau Abrikosov Gor’kov)
theory is based on the property that the superconducting phase is a well defined ther-
modynamic phase with the order parameter Ψ(r) increasing from zero at Tc up to one at
T = 0. We can interpret |Ψ(r)|2 as the density of superconducting electrons. The phase
transition to the superconducting state at T = Tc is a second order transition which is
described by the theory of Landau.
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We consider the Gibbs free energy gs of the superconducting state in zero magnetic field
and expand it as a Taylor series in |Ψ(r)|2: gs = gn + α|Ψ(r)|2 + 1

2β|Ψ(r)|4 + . . . where
gn is the free energy in the normal state. We want to minimize this function to get a
state that is stable (as the superconducting state), therefore we can already make some
assumptions:

i) Keeping in mind that the system will be in the state with the lowest energy we
know gs must be smaller than gn for T < Tc but gs > gn for T > Tc.

ii) The parameter β needs to be positive, otherwise, for very large value of the order
parameter Ψ we would get the lowest energy and minimization of the energy would
lead to Ψ→∞ and give a superconducting state also above Tc.

iii) For T < Tc the parameter α must be negative to make the free energy smaller in
the superconducting state with higher order compared to the normal state energy.

iv) For T > Tc we want the superconducting free energy to be higher than the one in
the normal state and further, we also want the state with zero order to be the most
favourable. Therefore we need α to be positive in this regime.

Considering these assumptions we can expand the parameters α and β to first order in
temperature:

α(T ) = α(0)
(
T

Tc
− 1

)
(2.18)

β(T ) = β = const. (2.19)

If we want to find the equilibrium value of the order parameter Ψinf s.t. ns = |Ψinf |2, we
need to minimize the free energy with respect to the order parameter:

dgs
d|Ψ|2 = 0 ⇐⇒ α + β|Ψinf |2 = 0 (2.20)

With this we obtain:

ns = |Ψinf |2 = −α(T )
β(T ) = α(0)

2β(0)

(
1− T

Tc

)
(2.21)

Inserting this into the free energy we get:

gs − gn = −1
2
α2(T )
β(T ) = −α

2(0)
2βT 2

c

(T − Tc)2 (2.22)

We can now also consider spatial variations of the order parameter and the influence of
a magnetic field, then we have for the Gibbs free energy:

gs(B) = gn + α|Ψ|2 + 1
2β|Ψ|

4 + 1
2µ0
|Ba −Bi|2 + 1

2m∗
∣∣∣∣
(
~
i
∇− qA

)
Ψ
∣∣∣∣2 (2.23)
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This formula contains two additional terms, the first one referring to the energy needed to
change the magnetic field and the second for the spatial variations of the order parameter.
To get the total energy we need to integrate this term over the volume: Gs(B) =∫
V gs(B)dV . Minimizing this function by variation of Ψ and A leads to the following
two Ginzburg-Landau equations:

1
2m∗

(
~
i
∇− qA

)2

Ψ + αΨ + β|Ψ|2Ψ = 0 (2.24)

js = q~
2m∗i(Ψ

∗∇Ψ−Ψ∇Ψ∗)− q2

m∗
|Ψ|2A (2.25)

Using equation 2.25, the definition of the London penetration depth λ2
L = m∗

µ0q2ns
and

giving the order parameter a phase ψ = Ψ
Ψinf

= ψ0e
iϕ we arrive at js = − 1

µ0λ2
L

A. By
taking the curl on both sides this results in the London equation (2.10):

B = −µ0λ
2
L∇× js (2.26)

Considering the first Ginzburg-Landau equation 2.24 taking again ψ = Ψ
Ψinf

and the fact
that ns = |Ψinf |2 = −α

β
we find that:

−ξ2
GL

(1
i
∇− q

~
A
)2
ψ + ψ − |ψ|2ψ = 0 (2.27)

where we have defined ξ2
GL = − ~

2mα the Ginzburg-Landau coherence length. To get an
understanding of this length we assume a superconductor with infinite dimension in y
and z and starting at x = 0 extended to x→∞ in zero magnetic field ξ2

GL
d2ψ
dx2 +ψ−ψ3 = 0

with the solution for x > 0:
ψ(x) = tanh

(
x√

2ξGL

)
(2.28)

shown in Figure 8.

Figure 8: Relation between coherence length and penetration depth inside a type I and
type II superconductor [16]
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As shown in Figure 8 the order parameter first increases more or less linearly from 0 to
nearly 1 and then saturates until infinity at 1. This leads to the interpretation of ξGL as
the minimal length to change the order parameter Ψ to 0.

To end this section we want to consider the temperature dependence of these two lengths.
As both λL and ξGL depend on α we can find the temperature dependence of both but
need to keep in mind that the Ginzburg-Landau theory is only valid for T → Tc although
they include their values at zero temperature.

λL(T ) = λL(0)√
1− T/Tc

ξGL(T ) = ξGL(0)√
1− T/Tc

(2.29)

Looking at these equations we see that in the limit T → Tc (where they are properly
defined) both diverge to infinity.

To summarize, we have now seen three characteristic lengths of a superconductor:

i) penetration depth λL which gives the distance over which magnetic fields decay
inside a superconductor

ii) BSC coherence length ξ0 = 0.18 π~vF
2kBTc which is the average extension of a Cooper

pair

iii) Ginzburg-Landau coherence length ξGL which is a measure for the minimal distance
needed to change the superconducting order parameter

Looking at the relation between these parameters we can deduce that ξGL > ξ0 since the
length needed to change the number of Cooper pairs surely has to be larger than the
extension of these. An important relation to define is the Ginzburg-Landau parameter
κ = λL

ξGL
which is independent of temperature and magnetic field and can therefore be

used to classify superconductors (see Figure 8):

• if κ < 1√
2 we have a type I superconductor

• if κ ≥ 1√
2 the superconductor is type II und will enter the vortex phase above a

lower critical field Hc1 .

In a more phenomenological way, we can say that if the penetration of the magnetic
field is larger than the length needed to change the order parameter, it is possible that
thin flux tubes can enter the superconductor.
Within this theory it is also possible to calculate the critical field of a type I super-
conductor. Using thermodynamics one can add the magnetic part (coming from the
magnetisation) to the Gibbs free energy dG = −SdT + V dp−mdB leading to:

Gs(B) = Gs(0)−
∫ B

0
mdB (2.30)
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As a system always chooses the state with lowest energy the critical field is at the point
where Gs(B) = Gn(B) = Gn(0).

The upper critical field of a type II superconductor (which is examined in this thesis)
can be found by some qualitative considerations. Enhancing the magnetic field yields
more and more flux tubes. Such a flux tube can only occur within a circle with minimal
radius equal to the coherence length (since this length is needed to change the order
parameter to zero). Considering a plane perpendicular to the magnetic field of area L2.
Superconductivity will break down if this area is completely filled with the flux tubes:
N2πξGL = L2. The magnetic field will then be B = Nφ0

L2 . Substituting one of these
equations into the other yields:

Bc2 = φ0

2πξ2
GL

(2.31)

This formula can also be found taking again the Gibbs free energy. Further, the tem-
perature dependence is given by the temperature dependence of the coherence length.
With similarly simple considerations one can find an approximation for the lower critical
field. The first flux tube will be able to enter the superconductor if the flux through the
area of radius equal the penetration depth will be equal to the flux quantum: πλ2

LB = φ0.
In this case the lower critical field would be: Bc1 = φ0

πλ2
L
. This is actually not the value

found in literature but comparable. Starting with the Gibbs free energy the critical field
is found to be:

Bc1 = φ0

4πλ2
L

ln(κ− 0.08) (2.32)

2.2.3 Amorphous superconductors

The superconductors examined in this experiment are amorphous films so they do not
have any long range atomic order which means that the concept of phonons as crys-
talline quasiparticles cannot be applied (Figure 9). This also implies that they cannot
be conventional superconductors as the positive attraction between two Cooper pairs
cannot be mediated by phonons. In amorphous films [17] there only exists a short range
order of the atoms but as in a crystal, the atoms can vibrate around their equilibrium
position with different frequencies. This leads to very strong interactions between the
conducting electrons and the atoms which result in an attractive interaction between
the electrons and therefore the formation of superconducting Cooper Pairs.

In contrast to conventional superconductors, some important limitations can be found.
Most importantly, concerning the coherence length and the penetration depth. As the
attractive interaction is due to inelastic scattering, there is no phase coherence between
the electrons and therefore the coherence length ξ is very short of the order of the mean
free path (a few nanometer). The penetration depth is related to the normal state con-
ductivity. Lower normal state conductivity implies a higher penetration depth and as
amorphous films have lower normal state conductivity the penetration depth λ is in-
creased. Taking these two properties together we have λ >> ξ. This leads to a very
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high Ginzburg Landau Parameter κ and therefore to a strong type II superconductivity.

Figure 9: Comparison between the crystalline and the amorphous structure [18]. The
crystalline order which has a defined lattice symmetry with unit cells on the
left. On the right a typical amorphous crystal with only short range order is
shown.
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3 Experiment
To find the critical temperature Tc and further the upper critical field Bc2 transport
measurements were done. Using the physical property measurement system (PPMS)
the amorphous films were cooled down below the critical temperature, which is known
to be around 7K in zero magnetic field, to observe the transition in the resistance. The
PPMS is a cryostat with a magnet and can be used for transport measurements down
to 1.8K in different magnetic fields.

3.1 Preparation of the films
For the preparation of the films the High Power Impulse Magnetron Sputtering (HiP-
IMS) [19, 20] was used. This device is often used to grow thin amorphous films on
different substrates.
For the sputtering process two targets are placed on a magnetron. One containing Tantal
and Niobium and the other one the three elements Hafnium, Zirconium and Titanium.
The chamber used for the sputtering has first to be evacuated to create a vacuum. Af-
terwards, a process gas, in this case argon, is put into the chamber with a very low
pressure. The magnetron is then used as the cathode and the chamber acts as the anode
to accelerate electrons. These electrons collide with the argon atoms and ionize them.
This positively charged ion is then accelerated towards the magnetron carrying enough
energy to remove an atom of the target material which then will condensate on the
substrate. The still ionized argon atoms recombine with the free electrons what creates
a visible plasma. In the magnetron sputtering, in addition, a magnetic field is applied to
get a better ionisation of the process gas. The HiPIMS involves a plasma with a much
higher density such that the sputtering rate is increased. This is achieved by a much
higher voltage applied on the magnetron. To reach the therefore needed high electrical
power the voltage is pulsed with a low duty factor (which means most of the time the
source is switched off) to be able to cool the system.

Figure 10: Schematics of a HiPIMS
with high density plasmas
[21]

Figure 11: Picture of the HiPIMS from
Mantis at ETH [22]
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Varying the electric potential on the cathode and the deposition time, films with different
compositions and thickness can be produced. For this thesis (TaNb)x(HfZrTi)1−x films
with x from 0.1 to 0.9 in steps of 0.1 were produced. All with a thickness of between
600nm and 1µm.

Afterwards, the thickness of the films was measured with a profilometer from Dektat
[23]. This device scans the surface of the sample with a diamond pin, always being in
contact with the sample. Like this the prifilometer can measure surface variation with
a resolution of ∼ 5Å. For the measurement of the film thickness not only the films but
also the pure substrate around the films was scanned (Figure 12). By calibrating the
height of the substrate to 0 (red shaped area), the thickness of the film can be read out
directly from the green shaped area. The results of the measurements are summarized
in Table 1.

Figure 12: Output of the measurement of the film thickness. On the left side the surface
of the substrate is scanned and on the right the surface of the film which is
on the substrate.

The composition of the films was checked with the scanning electron microscope (SEM).
In Figure 13, the peaks for the different elements in the film are clearly visible. From
these the fraction of each element can be determined. In most cases the part of the tar-
get with TaNb was a bit larger than predicted which can be explained by a systematic
error but it does not matter that much, as we only want to compare the compositions
relative to each other.

composition x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
thikness d [nm] 955 750 630 635 625 620 622 623 740

Table 1: Overview thickness of the different films
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Figure 13: The composition of the different elements in the film using SEM. The Graph
shows the peaks which ware labelled with the element they correspond to.
On the intercept on the right the rates of each element are extracted from
the graph. In this case: Nb 29.62%, Ta 29.27%, Hf 14.10%, Ti 13.76% and
Zr 13.24%

3.2 Transport measurement
The transport measurements were done with a physical properties measurement system
(PPMS) from quantum design [24, 25]. This device can be used for many different mag-
netic, electric and thermal measurements, as heat capacity, resistivity or magnetisation.
It mainly consists of a helium cryostat that can be controlled by a "Model 6000" which
allows to directly apply different voltages and currents. This process can further be
automatized with a software on the computer where it is possible to program a whole
sequence which then is executed by the system itself.
The temperature range goes from 1.9K (sometimes even 1.8K) up to around 400K. For
the cooling down to 4.2K liquid helium can be used. Afterwards, the cooling process is
continued by pumping the vaporized helium which further cools down the system. With
a helium-3 refrigerator even temperatures down to 0.4K can be achieved.
On the other hand, the magnetic field can be controlled from 0T up to 9T or even up
to 16T in other devices. This is done by a superconducting magnet.
Figure 14 is a picture of the PPMS and Figure 15 shows the schematic setup of the
cryostat with all different isolations.
For transport measurements the sample holder is shown in Figure 16. It is possible to
measure three samples at the same time all with a 4 point measurement. The advantage
of this 4 point measurement is that the current and voltage are measured separately
and the measurement of the one does not influence the other. So in this experiment by
putting a certain current between two of the four wires, the voltage can be measured
over the other ones without any connection to the current. This provides a much higher
accuracy.
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Figure 14: Picture of the
PPMS from Quan-
tum Design [26]

Figure 15: Schematic setup of the physical prop-
erty measurement system [27]

Figure 16: Sample holder for the trans-
port measurement done with
the physical property mea-
surement system (i.e. the
model 6000) [28]

Figure 17: Test box to put the sample
holder used for the determi-
nation of the sheet resistance
at room temperature [28]

3.3 Performance of the experiment
First, the prepared films in a more or less squared shape are put on the sample holder
and are fixed with adhesive. Afterwards, the four contact wires between the contacts
on the sample holder and the film were made with a tpt wire bonder. As material for
the wire, gold was used to minimize the resistivity of the wires. This prepared sample
was then put into the helium cryostat. To measure the resistance, a current was applied
to the sample. This current has to be below the critical current of the superconducting
state and was chosen to be between 100µA to 1mA depending on the composition of the
films. From the resulting voltage on the other contacts then the resistance was automat-
ically calculated by Ohm’s law and saved. To get more reliable results, this resistance
measurement was performed five times for each temperature and magnetic field.
In zero magnetic field in a first sequence the resistance was measured from 300K down
to 1.8K (Figure 18). Knowing the transition temperature to be around 7K or below,
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the measurement with applied magnetic field was only done from 10K or 8K down to
1.9K, respectively, to extract the transition temperature for different fields (Figure 19).
During this sequence first the magnetic field was set, then, the system was cooled down,
and afterwards, heated up again to reset the magnetic field and so on. The magnetic
field was applied in steps of 0.2T in the range 0T−2T and then in steps of 0.5T up to 9T.

Figure 18: Plot of measured resistance for all different compositions from 300K to 1.8K.
The strongly varying normal state resistance comes from the different shapes
and thicknesses of the measured films.

As the thin films are not exactly square shaped the measured resistance is not equal
the sheet resistance R 6= RS and therefore a second measurement was needed. This
measurement was done at room temperature with a sample test box (Figure 17). For
each film four measurements of the resulting voltage were done using a fixed current of
1A. Still having the four point wires on the sample the current was applied between any
two neighbouring contacts measuring the voltage over the other two.
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Figure 19: Plot of the measured resistance for the film with composition x = 0.3 in
different magnetic fields. For higher magnetic fields than 5T there is no su-
perconducting transition down to 1.9K. The plots for the other compositions
look quite similar but the highest magnetic field still showing a transition
varies depending on the composition.
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3.4 Data
The overall received data for the analysis are:

• the film thicknesses from the measurements with the profilometer restored in Table
1

• the exact compositions from the measurement with the SEM but for the graphs
nevertheless the calculated compositions were used

• the normal resistance of all compositions in zero magnetic field from 300K down
to 1.8K and in different magnetic fields from 10K/8K down to 1.9K

• the measured voltage at room temperature between any neighbouring contacts on
the films to calculate the correction between sheet resistance and measured normal
resistance

This data was then analysed using python and excel to first get the resistivity out of
the measured resistance and afterwards the different superconducting parameters as the
transition temperature, upper critical magnetic field, etc. depending on the composition.
All the data was received with a small statistical error (< 1%) which is too small to be
seen as error bars in the plots.
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4 Results and Analysis
4.1 Resistivity
To get the resistivity out of the measured normal state resistance first the sheet resistance
has to be found [29]. The resistance can be written as R = ρ

t
L
W

= RS
L
W

with t standing
for the thickness of the film and L,W for the length and the width, respectively. In the
second step, the sheet resistance was defined as RS = ρ

t
. As the films are not exactly

rectangular shaped, i.e. L and W are not defined, the connection between the measured
resistance and the sheet resistance has to be found in a different way using the four
measurements of the voltage with fixed current.
The sheet resistance is then defined as [30]:

RS = π

8 ln(2)

4∑
n=1

(
Vn + Vn+1

I

)
f
(
Vn+1

Vn

)
(4.1)

where the Van der Pauw function f can be found numerically from

Vn+1
Vn
− 1

Vn+1
Vn

+ 1
=

arcosh
(

exp(ln(2)/f)
2

)
ln(2)/f (4.2)

Using this equation the sheet resistance at room temperature (T = 294K) was calculated
for all compositions and compared to the measured resistance at the same temperature.
As the correction factor between the measured resistance and the sheet resistance is
temperature independent, it can be calculated at room temperature and be used for all
temperatures. From the sheet resistance the electrical resistivity can be calculated as
ρ = RSt. Table 2 shows the measured resistance, sheet resistance, resistivity at room
temperature and the correction factor for the different shapes L

W
= RN

RS
for all films.

composition x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
resistance RN [Ω] 0.483 0.418 0.407 0.517 0.250 0.225 0.216 0.209 0.129
sheet resistance RS [Ω] 1.490 1.594 1.632 1.432 1.210 1.000 0.849 0.628 0.483
resistivity ρ[µΩcm] 142.27 119.52 10.284 90.91 75.63 62.00 52.84 39.09 35.74
correction factor L/W 0.324 0.262 0.249 0.361 0.207 0.225 0.254 0.334 0.267

Table 2: Overview of the connection between the resistance, the sheet resistance and the
resistivity depending on the composition
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Figure 20: Normal state resistivity ρN plotted againtst the composition of the films. The
dots are the determined resistivities, the line is inserted to show the linear
trend of this quantity.

The resistivity determined just above the superconducting transition was read out and
plotted for the different compositions in Figure 20. It shows quite a linear behaviour
which gives higher resistivity the more of HfZrTi is included, i.e. the lower x (part of
TaNb) is. This was also expected if one looks at the resistivity of the pure films (Figure
21) where TaNb seems to turn superconducting a bit below 1.9K, whereas on the other
hand in HfZrTi, the resistivity again increases just around 1.9K after dropping nearly
to zero.
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Figure 21: Behaviour of the pure films at low temperature, to clearly see the trends
only lines and not measured points are shown. The upper plot shows the
resistance of a pure TaNb film. By lowering the temperature the resistivity
first increases but right above 1.9K it seems to undergo a superconducting
transition. In contrast, in the lower plot for HfZrTi the behaviour seems to
be the opposite.

4.2 Transition temperature
The transition temperature can be easily estimated by looking at the graph (Figure 22)
of resistivity versus temperature. It is the temperature where the resistivity drops to
zero. There are different ways to do this more accurately. In this thesis quite a simple
way was chosen by plotting a horizontal line at half of the resistivity right above the
transition (50%-method) and then finding the temperature where the resistivity crosses
this line. This was done for all compositions and in all possible magnetic fields where the
transition still occurred above 1.9K. Figure 22 shows an example of such a determination
of the transition temperature.
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Figure 22: Determination of the transition temperature in different magnetic fields, here
for the film with x = 0.5. The red lines show the measured resistivity in the
different magnetic fields from 0T to 7.5T with a clearly visible superconduct-
ing transition. The green line is drawn at half of the resistivity in the normal
state at 7K. Indicated by the blue dots are the intersections of the green line
with the measured red lines. The x-component (temperature) of these points
is then interpreted as the transition temperature.

An even more accurate way would have been to fit the transition curves with the suitable
function that includes the critical temperature Tc as fitting parameter. The transitions
from the normal to the superconducting state are not completely sharp, they are smeared
out. This is because of the superconducting fluctuations which we have to take into
account. The resistivity in the normal state is then given by:

ρ(T ) = 1
σN + σ′

(4.3)

where σN is the normal state conductance and σ′ the conductance coming from the
fluctuations. These fluctuations depend on the dimensions of the films and increase
by approaching the transition. For a sample with length l, width w and thickness d
larger than the coherence length ξ, i.e. the 3D case, the additional conductance can be
estimated by [30]:

σ′ = e2

32~ξ(0)

(
Tc

T − Tc

)1/2
(4.4)
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Which leads to the following formula for the normal state resistance:

R3D(T ) = RN

1 + a3D
(

Tc
T−Tc

)1/2 (4.5)

where a3D = RNwde
2

32~lξ(0) .

Figure 23: Determination of the transition temperature using the fitting method. The
blue dots show the measured resistance in zero magnetic field and the red
line shows the least square fit using equation 4.5.

Using RN , a3D and Tc as fitting parameter, the curves for zero magnetic field were fitted
with a least square fit (Figure 23). As expected from the quite sharp transitions the re-
sults were nearly the same (with a deviation < 1%) as with the method described above.
Furthermore, this method is only applicable in zero magnetic fields as for transitions in
magnetic field no simple analytic formula for the fit can be found. So the presented
results are the ones from the 50%-method.

28



Figure 24: Critical temperature in zero magnetic field for the different compositions. In
this and all following plots the dark blue dots show the determined value for
the specific parameters and the light blue line is drawn for better understand-
ing of the trend.

The transition temperature is highest for the composition where both target materials
have equal parts (x = 0.5) and slightly varies for the different compositions as shown
in Figure 24. It can further be seen that for the film where there is more than half of
HfZrTi, the transition temperature decreases much faster than on the other half with
more TaNb.
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Figure 25: Behaviour of the transition temperature depending on the composition and
the magnetic field. To illustrate the influence of the magnetic field on the
transition temperature for the different compositions, for each magnetic field
from 0T to 2.5T the transition temperature is drawn as a line depending on
the composition. The distance between the line is proportional to the slope
of the upper critical field dBc2/dTc. This means the slope will be higher for
composition with larger x then for them with smaller, as also shown in Figure
26.

Figure 25 shows how the transition temperature is lowered in higher magnetic fields.
Further, it can be seen that for a fixed composition the transition temperature scales
linearly with the magnetic field but not coherently for all the different films. This means
that the slope dBc2

dTc
is different depending on the composition (Figure 26) which will also

lead to different critical fields.
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Figure 26: Comparison of the slope of the magnetic field vs. the transition temperature
depending on the composition

4.3 Critical field
For the calculation of the critical field at zero temperature, the transition temperatures
depending on the different applied fields were plotted against the magnetic field. They
show a linear dependence and therefore were linearly extrapolated to zero temperature.
This linear fit represents more or less the critical field depending on the temperature
Bc2(T ). The critical field at zero temperature is then the field where the transition
temperature would be 0K and can therefore be interpreted as the intercept on the y-axis
in Figure 27.
From the Werthamer, Helfand and Honenberg (WHH) theory [31], the upper critical
field at zero temperature in the dirty limit where the mean free path l << ξ0 is given
by:

Bc2 = −0.69Tc
dB

dT

∣∣∣
T=Tc

(4.6)

Using this equation for the extrapolation to zero temperature, the critical field would be
lower by approximately a factor of 1√

2 compared to the results obtained from the linear
extrapolation.
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Figure 27: Determination of the upper critical field Bc2(0) on the example of the com-
position with equal parts x = 0.5. The blue dots are the measured values
which are more or less on a line. For the extrapolation to zero temperature a
linear fit was done (shown as red line). The intercept of this line determines
the magnitude of the upper critical field.

The dependence of the critical field on the composition is shown in Figure 28. It has a
maximum for the composition with 30% of TaNb and decreases quite fast on both sides.
The minimum can be found in the film with 90% of TaNb with quite a low critical field
of around 4T.

32



Figure 28: The upper critical field Bc2 depending on the composition. The blue dots and
line show the extrapolated values of the upper critical field with the method
explained above. For the green dots the WHH approximation was used to
correct the extrapolated values.

4.4 Coherence length
Equation 2.31 for the upper critical field in the Ginzburg-Landau theory can be solved
for the coherence length:

ξGL =
√

φ0

2πBc2(0) (4.7)

With this equation the coherence length was calculated using the upper critical fields
from WHH theory and plotted in Figure 29.
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Figure 29: Graph of the coherence length depending on the composition

As the Ginzburg-Landau coherence length is proportional to 1√
Bc2

, it has its minimum
of around 5nm where the critical field was maximal at x = 0.3 and increases on both
sides in a similar way with a maximum at x = 0.9 and a value of around 11nm.

4.5 Penetration depth
The penetration depth is a measure of how far a magnetic field can enter a supercon-
ductor and depends on the London penetration depth shown in Section 2.2.2. This
determination is not as trivial as the ones before as in the equation 2.13 for the London
penetration depth parameters as the renormalized mass m∗ are included. In the limit of
pure superconductors we have λ = λL but for the dirty limit (l >> ξ0) in thin films we
get [32]:

λ(0) = λL(0)
√
ξ0

l
(4.8)

We can find for the London penetration depth λL(0)2 = 3
µ0e2v2

FN(0) by using the following
equations for the different parameters of the BCS theory [33]:

ξ0 = ~vF
π∆(0) and N(0) = 1

e2ρND
(4.9)
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and the diffusion constant D = 1
3vF l. Putting these equations together we get the

formula for the penetration depth [34]:

λ(0) =
√

~ρN
π∆(0)µ0

(4.10)

We have already seen the temperature dependence in equation 2.14 as

λ(T ) = λ(0)√
1−

(
T
Tc

)4
(4.11)

Figure 30: Penetration depth λ depending on the composition

In Figure 30 we see that the penetration depth decreases with increasing fraction of
TaNb. The maximum is found for 10% of TaNb with a penetration depth of 800nm.
Then, it first decreases quite fast and then slower down to 200nm at 90% of TaNb.

4.6 Further superconducting parameters
From the data some more parameters were calculated. Mostly using the BCS-Theory
which is not completely applicable to this material but can be taken as quite a good
approximation for unconventional superconductors.

35



4.6.1 Energy Gap

The energy gap in the BCS-Theory is defined as [34]:
∆(0) = 1.764kBTc (4.12)

and is shown in Figure 31 for the different compositions.

Figure 31: Energy gap calculated from BCS-Theory depending on the composition

The gap in a superconductor can in some applications be seen as a measure for the
stability of the superconducting state, for example the critical current increases with
increasing gap. As shown in Figure 31, the gap is more or less constant respectively
very slightly decreasing between 10% and 70% of TaNb with a value between 0.8meV
and 1.0meV. Above 70% TaNb, it starts to decrease sharply down to a value of 0.4meV.

4.6.2 Diffusion constant

As already seen, the electronic diffusion constant is defined as D = 1
3vF l where l is the

mean free path. For type II superconductors we can find a formula for the diffusion
constant depending on the upper critical field by using the Ginzburg-Landau coher-
ence length. Using again the dirty limit [35], the coherence length near the transition
temperature can be written as:

ξ(T )2 = π3

24eγ lξ0

(
Tc − T
Tc

)−1
= D

π~
8kB(Tc − T ) (4.13)
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with a different definition of the BCS coherence length ξ0 = eγ~vF
π2kBTc

. We then have the
equation for the magnetic field depending on temperature as:

Bc2 = ~
2eξ(T ) = 4kB(Tc − T )

Deπ
(4.14)

taking now the derivative at Tc we arrive at the following relation:

dBc2

dT

∣∣∣∣
T=Tc

= − 4kB
Deπ

(4.15)

which can easily be solved for the diffusion constant:

D = −4kB
eπ

(
dBc2

dT

∣∣∣∣
T=Tc

)−1

(4.16)

The results are presented in Figure 32.

Figure 32: Diffusion constant depending on the composition of the films

From the results we can see that the diffusion constant increases like a parabola for
higher fractions of TaNb. From a minimum of around 40mm2/s to nearly 160mm2/s.
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4.6.3 Density of States at Fermi Surface

Another interesting superconducting parameter is the density of states at the Fermi
surface. For the determination we can use the equation we have already seen in Section
4.5 on the penetration depth:

N(0) = 1
e2ρND

(4.17)

Again, the results are plotted against the composition.

Figure 33: Density of states depending on the composition

The DOS shows approximatively a linear increasing trend for increasing ratio of TaNb
(Figure 33) but has some values varying from this linear trend.

4.6.4 Ginzburg Landau Parameter κ

The dimensionless Ginzburg Landau parameter gives some information about how strong
type I or II the superconductivity is. Too high values of it can make the superconducting
phase unstable. As seen in section 2.2.2, Kappa is defined as:

κ = λ

ξ
(4.18)

38



Shown in Figure 34, Kappa decreases linearly for increasing fraction of TaNb with a
maximum value of 110 down to a minimum of around 20. So clearly all of these compo-
sitions are strong type II superconductors up to really strong type II in the compositions
with x < 0.3.

Figure 34: Dimensionless parameter kappa helping to classify between type I and type
II depending on the composition
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5 Conclusion and Outlook
5.1 Conclusion
In summary, all films (TaNb)x(HfZrTi)1−x with 0.1 ≤ x ≤ 0.9 are superconducting with
transition temperatures between 2.5K and 7K. The highest transition temperature is
found for x = 0.5 with Tc = 6.76K. But not for all parameters the composition with
x = 0.5 seems to be the best. For the upper critical field which is also important for
applications, the composition with x = 0.3 provides the highest value of Bc2 = 10.3T.
The penetration depth, which is an indicator for how far an external magnetic field can
enter the sample, shows a constantly decreasing behaviour for larger fraction of TaNb.
So the films with higher x would be favourable. The energy gap calculated from BCS
is similar for all composition except from the two with highest part of TaNb where it
decreases. A further interesting parameter to mention is the Ginzburg Landau parameter
κ which clearly classifies all films as unconventional type II superconductors. The κ is
linearly decreasing for higher fractions of TaNb. There were some further parameter
examined but they did not show really interesting behaviours.
To conclude there is no overall film composition which could be classified as the best for
all applications, as not for all applications the same parameters are important, so the
favourable compositions depends on the applications. But we can clearly say that the
composition with similar fractions of TaNb and HfZrTi, i.e. x in the range from 0.3 to
0.7, show a more interesting behaviour for further applications than the others.

5.2 Outlook
It could be interesting to do some more measurements on these films. On the one hand,
using the exact measured compositions instead of the ones calculated from the sputter-
ing rate and on the other hand, also using exactly squared sheets instead of calculating
the sheet resistance from four point measurements afterwards. Also, lowering the film
thickness to a few nanometers, which would make them nearly a 2D system, could be
worth a try.
As the transition temperature does not only depend on the materials a film consists
off but also on the condition during the composition, it could be interesting to vary
them. One possibility is to change the substrate temperature during the deposition of
the films. Increasing the temperature could also increase the transition temperature.
Other possibilities would be to change the process gas or the pressure for the deposition.

Furthermore, in the measurements for the compositions x = 0.7, 0.8 an interesting phe-
nomena can be observed. There seems to be a second drop in the resistivity slightly
above the transition temperature in higher magnetic fields as shown in Figure 35. By
measuring the films again, one could find out if this was a measurement error or a special
behaviour of these films.
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Figure 35: Resistivity in different magnetic fields for the composition of x = 0.8. The
plot shows two special effects or measurement errors. First, there seems to
be a double transition for magnetic fields above 2T, Second, around 7K there
is a small drop of the resistivity in the magnetic field of 7.5T.

As seen in [1], the superconductivity in the (TaNb)x(HfZrTi)1−x crystal is very robust
against pressure until the crystal breaks. So it would be interesting to further examine
the amorphous films at high pressures to check if this robustness still exists or can even
be improved.

A last idea could be to try to even enhance the entropy of the high entropy alloy by either
replacing one of the materials in these films or by adding more materials to have an alloy
with more than five elements. With this new film one could also do first measurements to
find out if they are superconducting and afterwards also the superconducting parameters
and the behaviour if pressure is applied.
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