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Abstract 
 
 
We formulate a problem on diamagnetic levitation, which may be suitable for 

specialized high-school or first-year students in physical sciences. We guide the 

students, step-by-step, through the physics of diamagnetic levitation. The calculations 

are simplified by assuming a ring-shaped geometry of the diamagnetic object residing 

above a magnetic dipole. This problem was originally intended for the International 

Physics Olympiad 2016 (IPHO 2016), but was finally deemed surplus and therefore 

not set.  
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The physics of diamagnetic levitation 
 
You may have seen the superconducting train levitating on permanent magnets here 
on our campus, which allows for a motion that is almost free of friction (see Figure 1 
and [1]). The family of superconductors used in this experiment, known as “high-
temperature superconductors”, was originally discovered by Karl Alex Müller at our 
University and his colleague Georg Bednorz at IBM Rüschlikon, Switzerland [2]. The 
current record for the highest transition temperature to superconductivity at ambient 
pressure (as of January 2021) is still in a compound first reported by the author of this 
article [3], meanwhile optimized to 138 K (! -135 ºC)) [4]. 
 

  
 
Figure 1: Train levitated by superconductors on a magnetic trail 
 
 
Superconductors react to an external magnetic field Bex in such a way that they tend to 
expel it completely from their interior: a superconductor is a perfect diamagnet. This 
means that when the superconductor is exposed to an external magnetic field Bext, it 
creates locally a perfectly “compensating field” µ0M = –Bext (M is called a 
“magnetization”, with µ0 = 4" x 10-7 Tm/A) so that the sum of µ0M and the external 
magnetic field inside the superconductor is zero (M has the units A/m, and Bext the 
unit Tesla). 
 
In terms of a material constant, we can ascribe to a superconductor a dimensionless 
magnetic susceptibility ! = µ0M / Bext , which represents the ratio of the 
“compensating field” and the external magnetic field. From what we have said above, 
a perfect diamagnet has ! = µ0M / Bext  = –1. You will learn below that diamagnetic 
materials (i.e., materials with 

! 

" < 0) can levitate above permanent magnets under 
certain circumstances. 
 
Unfortunately, superconductors at normal pressure have to be cooled way below room 
temperature to operate. There are other materials with diamagnetic properties even at 
room temperature, but their dimensionless magnetic susceptibilities are usually only a 
tiny fraction of 

! 

" = –1. 
 
One of these materials is pyrolytic graphite. A piece of pyrolytic graphite can levitate 
in the presence of strong enough and suitably arranged permanent magnets even at 
room temperature, as you can see it on the picture below (Figure 2). 



    
 
Figure 2: A sheet of pyrolytic graphite levitating on an array of permanent magnets 
 
 
In Figure 2, four cube shaped permanent magnets are placed is such away that a stable 
levitation is possible. To achieve this, the poles of the cubes are alternating (north-
south-north-south). 
 
The correct quantitative analysis of levitation in this geometry is rather complicated. 
A much easier geometry that we want to consider here is the levitation of a 
diamagnetic torus above a cylindrical permanent magnet (see Figure 3, left). 
 

     
Figure 3, left: a diamagnetic torus with radius a levitates above a cylindrical magnet; 
middle: an idealized situation with a diamagnetic circle above a magnetic dipole 
moment µ; right: choice of the coordinate system 
 
 
Approximations: We approximate the cylindrical permanent magnet by a point-
like magnetic dipole “  

! 

! 
µ ” (Figure 3, middle), and the torus by a circle with radius 

a and infinitely small cross-section A, so that the total mass m is equally 
distributed along the circumference of the circle. 



In the following, we guide you through several considerations and calculations, which 
should enable you to study this levitation problem and investigate under which 
circumstances a stable levitation is possible. 
 
 
1) The magnetic dipole moment !µmag  of the permanent magnet 
 
In general, the magnetic dipole moment   

! 

! 
µ  of a magnetized volume V (here we choose 

the volume V of the cylindrical magnet) is a vector, given by   

! 

! 
µ = V

! 
M . It is thought to 

point from the south to the north pole of the considered magnet. We will now estimate 
the value of the magnetic dipole moment µmag = !µmag of the permanent magnet (to 
distinguish the magnetic dipole moment produced by the permanent magnet from 
other magnetic moments in this problem, we call it “ !µmag ”). The strongest available 
permanent magnets consist of an alloy of Nd, Fe and B, and if they are fully saturated, 
they produce in their interior a magnetization µ0Mmag ! 1.3 T. The cylindrical 
permanent that we consider here has a radius R = 2 mm and a height h = 2 mm.  
 
 
Question a) Please calculate the absolute value of the magnetic dipole moment µmag 
of this magnet, expressed by Mmag, R and h, and as a number with correct units. 
 
 
2) The magnetic field   

! 

! 
B (! r )  created by the magnetic dipole moment 

 
Now we consider !µmag  as a known quantity, and focus on the magnetic field created 
by it. We choose the origin of our coordinate system at the position of the magnetic 
dipole (Figure 3, right). It is known that the magnetic field   

! 

! 
B (! r )  at the position !r  

produced by a magnetic dipole moment !µmag !is  
 

    
!
B(!r ) = µ0

3!r ( !µmag !
"r )! "µmagr

2

4"r5 "
 

 
The diamagnetic ring with radius a is thought do reside above the dipole in a distance 
z in the direction of !µmag , with its center directly above the dipole so that the 
symmetry axis of circle is parallel to !µmag (Figure 3, middle).  
 
 
Question b) Please calculate all components of the magnetic field vector   

! 

! 
B (! r )  at the 

position x = 0 and y = a on the ring, expressed by µmag, a and z. 
 
 
3) Levitation 
  
We now turn to the physics of levitation. In equilibrium, the forces acting on the 
diamagnetic ring determine in which distance z it is levitating above the magnet. 
We first consider a line element dr of the circle at the position x = 0 (see Figure 4).  
 



    
Figure 4: Line element dr at the position x = 0 on the diamagnetic ring 
 
 
Below you will calculate the magnetic potential energy of this line element (we call it 
“partial “ magnetic potential energy), then that of the whole ring, and finally you can 
derive from it the magnetic force acting on the ring. 
 
As you will see, the partial magnetic potential energy dEpot !of this line element dr 
depends on the partial magnetic dipole moment d !µgr = dV

!
Mgr of the line element with 

the volume dV filled with pyrolytic graphite (therefore we use the index “gr”), and on 
  

! 

! 
B (! r )  created by the magnetic dipole at the position !r !of dr (see Figure 4). 
 
With the given magnetic susceptibility 

! 

"gr of pyrolytic graphite and   

! 

! 
B (! r ) , you can 

express   

! 

! 
M gr  and d !µgr = dV

!
Mgr  in a straightforward way.  

 
 
3.1) Magnetic potential energy of the ring 
 
You may have learnt or heard that the potential energy stored by a magnetic moment !
µ  in the presence of a magnetic field   

! 

! 
B  is given by the scalar product Epot = !

!
µ !
"
B . 

In our problem, the partial magnetic potential energy dEpot !of the line element dr with 
partial magnetic moment d !µgr is dEpot = !d

!
µgr !

"
B . The total magnetic potential 

energy Ering of the ring is then simply the sum of all partial magnetic potential 
energies, summed over all line elements dr of the ring. 
 
 
Question c) Show step by step, that the total magnetic potential energy Ering of the 
ring, expressed by 

! 

"gr, µmag, a, z and the cross section A of the torus, is 
 
 

 ! ! Ering = µ0
!!graAµmag

2

8"
a2 + 4z2( )
a2 + z2( )

4 .

!
 
3.2) Force derived from the magnetic potential energy 
 
In the following you can use the expression for Ering given in question c). The z-
component of the resulting force can be derived from it using 
 



      Fz = !
dEring

dz
. 

 
Question d) So far we have ignored force components in directions other than z. 
What can you tell about the total force on the whole ring in the x and the y directions? 
 
 
Question e) Please calculate the z-component of the magnetic force on the whole 
ring, expressed by 

! 

"gr, µmag, a, z and the cross section A of the torus. 
 
 
4) Levitation condition 
 
Knowing the z-component of the magnetic force on the whole ring, you can now find 
an equation for the levitation height z of the ring above the magnetic dipole. We 
assume that besides 

! 

"gr and µmag, the mass density ! of pyrolytic graphite and the 
gravitational acceleration g are also known. 
 
 
Question f) Find an expression that describes how the ring radius a depends on 
levitation height z, if the ring levitates in equilibrium of forces. Here, 

! 

"gr, µmag, z, g 
and ! are given quantities. Please also sketch the function a(z) using the numeric 
values of µmag, 

! 

"gr = -450x10-6, ! = 2100 kg/m3 and g = 9.81 m/s2 over the full range 
of possible z values. If you were not successful to calculate µmag in a), use here and in 
the following the numerical value µmag = 0.022 in correct SI units. 
 
 
Question g) Which is the theoretically maximum achievable levitation height zmax, 
and for which a would it be realized? 

! 

"gr, µmag, g and ! are given quantities. 
 
 
5) Maximum possible ring radius 
 
Question h) Which is a maximum possible ring radius a for which magnetic and 
gravitational forces can cancel each other? 

! 

"gr, µmag, g and ! are given quantities. 
 
 
6) Stability with respect to z-direction 
 
Assume that the ring is at first slightly vertically displaced below its levitation height.  
If released, it will either move back upwards to the original position (i.e., that position 
was stable), or the ring will drop down (i.e., the position was unstable).  
 
Question i) Develop a criterion for a stable levitation with respect to the z direction: 
for which values of z is the levitation stable? 

! 

"gr, µmag, g and ! are given quantities. 
 
 
  



7) Stability with respect to radial direction 
 
Now we assume that the ring is slightly horizontally displaced at its levitation height.  
If released, it will either move back to the original position (i.e., that position was 
stable) or the ring will be sidewise expelled from it (i.e., the position was unstable).  
 
Question k) Develop a criterion for a stable levitation with respect to the radial 
direction: for which values of z is the levitation stable? Again, 

! 

"gr, µmag, g and ! are 
given quantities. 
 
Summarize the results from questions i) and k) to identify the z values for which a 
levitation is stable with respect to disturbances in both z and radial directions. 
 
 
8) Oscillation frequency 
 
If the ring is levitating in a stable position and subsequently slightly displaced from 
this position by a small displacement !z in the z direction, there will be a restoring 
force !Fz. The ratio of this restoring force and the small displacement !z around the 
equilibrium position defines a “spring constant” k = !"Fz /"z , similar to the case of 
an extended spring. If you were successful in answering question i), it is easy to find 
an expression for this spring constant. 
 
Question l) Calculate the “spring constant” k, where a, z, 

! 

"gr, µmag, g and ! are given 
quantities, for the limit !z" 0 . 
 
If the ring is released after such a small displacement in the z direction, it will 
oscillate around its equilibrium position. The resulting oscillation frequency is given 
by f = k /m / 2! .  
 
Question m) Calculate the oscillation frequency from the known quantities 

! 

"gr, µmag, 
g and !  for the maximum and the minimum stable levitation heights.  
 
 
9) What changes if a superconducting material is used? 
 
We have seen in the introduction that ideal superconductors have a dimensionless 
magnetic susceptibility 

! 

" = –1. We now assume that we have a superconducting ring 
instead of ring of pyrolytic graphite.  
 
Question n) What would be the maximum stable levitation height zmax,stable  for a high-
temperature superconductor with ! = 6400 kg/m3 if 

! 

" = –1, and if the same magnet is 
used as in the previous examples? 
 
 
 
 
 
  



SOLUTIONS:  
 
Solution a):   µmag = !R

2hMmag  = 0.0260 Am2 
 

Solution b):!! !
!
B =

µ0µmag
4! (a2 + z2 )5/2

3az
0

2z2 ! a2

"

#

$
$
$

%

&

'
'
'

 

 
Solution c):  
 
 
As indicated in the problem, dEpot = !d

!
µgr !

"
B  for the line element dr, with 

d !µgr = dV
!
Mgr = A

!
Mgrdr  and µ0

!
Mgr = !gr

!
B . Therefore,  

 
  dEpot = !d

!
µgr !

"
B = A

"
Mgr !

"
Bdr = !A!gr

!
B2dr /µ0  

 
For symmetry reasons, 

!
B2 is the same on the whole ring, and therefore  

 

  Ering = !A!gr

!
B2 2!a /µ0 .  Note that !!gr > 0 ! 

 

From b), we have 
!
B2 =

µ0
2µmag

2

16! 2 (a2 + z2 )5
(5a2z2 + 4z4 + a4 ) =

µ0
2µmag

2 (a2 + 4z2 )
16! 2 (a2 + z2 )4

. 

 

and  Ering = !A!gr

!
B2 2!a /µ0 = !µ0

"graAµmag
2

8!
(a2 + 4z2 )
(a2 + z2 )4

. 

 
 
Solution d):!they are zero for symmetry reasons, or because !
! ! ! !

! ! !
dEring / dx = dEring / dy = 0 !

 

Solution e):!  Fz = !µ0
3!graAµmag

2

"
z3

a2 + z2( )
5  > 0   (!!gr > 0)

!
 

Solution f):! #$%! !!µ0
3!grµmag

2

2" 2
z3

a2 + z2( )
5 = #g

!
  

a2 = !µ0
3!grµmag

2

2" 2#g
z35 ! z2  = ! 7z35 ! z2 , with ! ! "µ0

3"grµmag
2

2# 2$g

#

$
%%

&

'
((

1/7

= 3.11mm
!

 
    Sketch of a(z) see below 
 



Solution g): from the above result a(z) in the limit a -> 0, 
 

    zmax = !µ0
3!grµmag

2

2" 2#g

"

#
$$

%

&
''

1/7

= $  

 
     zmax ! 3.11mm  
 
 
Solution h): from the above result for a(z), set d(a2)/dz = 0, which yields with 
 

!
zamax = 3 /10( )5/7 !

!
amax = zamax 7 / 3 = 0.646! !

 
   zamax = 1.32 mm, amax = 2.01 mm. 
 
 
Solution i): d2Ering/dz2 must be > 0 (or dFz/dz < 0).  
 

 dFz
dz

= !µ0
3!graAµmag

2

"
3a2z2 ! 7z4

(a2 + z2 )6  
(positive sign, because !!gr > 0 ).  

 

! ! ! dFz
dz

< 0 !&'( z > 3 / 7a = 0.655 a. 

 
Surprisingly, this result does depend neither on the properties of the magnet nor of 
those of pyrolytic graphite! To obtain numbers, inserting z = 0.655 a in a(z) gives  
 

! ! ! !
z > 3 /10( )5/7 ! = zamax =1.32 mm. 

 
Solution k): consider only one line element dr of the ring. Every horizontal 
displacement of the whole ring results in a certain radial and a tangential displacement 
component of this line element. The tangential component does not change dEring = 
drEring/2"a of the line element due to the radial symmetry. Only the radial 
displacement of the line element is relevant here. Therefore, d2(Ering/2"a)da2 must be > 
0 (here, a replaces the variable r).  
 

 d2

da2
Ering

2!a
!

"
#

$

%
&'
(7a4 + 42a2z2 ( 5z4 )

(a2 + z2 )6
> 0 for z < 42+ 1904

10
a  = 2.926 a. 

 
This limit is valid for all line elements showing a horizontal displacement, and is 
therefore valid for the whole ring. To obtain numbers, inserting z = 2.926 a in a(z) 
gives 

! ! ! !
z < 0.924! = 2.88 mm. 

 
Summary: stable levitation for 3 /10( )5/7 ! < z < 0.924! , 1.32 mm < z < 2.88 mm. 
  



Overview of the solutions of questions f-k: 

  
 
Solution l): The spring constant is, using the solution of question i),  
 

  k = ! dFz
dz

= µ0
3!graAµmag

2

"
3a2z2 ! 7z4

(a2 + z2 )6
= !2"#gaA$ 7 3a

2z2 ! 7z4

(a2 + z2 )6
 

 

Solution m): With the mass of the ring, m = 2!aA" , f = g! 7 7z
4 !3a2z2

(a2 + z2 )6
/ 2" "!

From the solution of question f), a2 = ! 7z35 ! z2 , where !  is defined above, and 
 

! ! ! !
f = g 10z2/5! !7/5 ! 3

z
"
#$

%
&' / 2" .  

From question k) we know that the range of stable z-values is 
3 /10( )5/7 ! < z < 0.924! . At the minimum value with 3 /10( )5/7 ! = z , f ! 0 "!At the 

maximum value, z = 0.924! , we have with ! !! 3.11 mm (question f)   f ! 23 Hz. 
 
Solution n): From the solution k), we know that z < 0.924! = zmax,stable .  
 
Inserting the numbers in the definition of !  given in solution f), we have ! ! 8.0 mm 
and zmax,stable  ! 7.4 mm. 
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