## Collapse of a wavefunction

Measurement of the polarization of two distant entangled photons with opposite polarization


Before a measurement in $r_{1}: \quad \Psi=\alpha \Psi_{\uparrow \downarrow}+\beta \Psi_{\downarrow \uparrow} \quad$ with $\alpha^{2}+\beta^{2}=1$ With a measurement in $r_{1}$ :

$$
\alpha=0 \text { or } 1, \beta=1 \text { or } 0
$$

(wavefunction "collapses" to $\Psi_{\uparrow \downarrow}$ or $\Psi_{\downarrow \uparrow}$ )
The same experiment in a "resting" frame and in a frame moving at relativistic velocity $v$ :
Resting frame: "I measure $\alpha=1$ and conclude that $\beta=0$ at $t=0$ "

| $\uparrow @ t=0$ | Resting <br> frame |
| :---: | :---: |
| $r_{1}$ | $\downarrow$$\downarrow$ | Moving frame

Frame moving with $\boldsymbol{v}$ : "A measurement of $\alpha=1$ at $t=t^{\prime}=0$ would imply that $\beta=0$ was determined already at a time $t^{\prime}<0$."


$$
t^{\prime}=-\gamma(v) \frac{v}{c^{2}}\left(r_{2}-r_{1}\right)
$$

© A. Schilling

