

Electroweak and central exclusive measurements in the forward region at LHCb

Seminar, Heidelberg, July 8, 2014

- LHCb detector
- Measurements with electroweak bosons
 - Motivation
 - Z production
 - Z plus jets, Z plus D, Z production in proton lead
 - W production
- Central Exclusive Production (CEP) @ LHCb.
 - J/ ψ and $\psi(2S) \rightarrow \mu \mu$
 - Outlook

Muon from Z

Summary

Katharina Müller

Interaction Point_V2

Tracks

LHCb Detector – more than a beauty detector

Fully instrumented in the forward region ($2 < \eta < 5$) some detection capability in backward region (- $3.5 < \eta < -1.5$)

 \rightarrow LHCb is a general purpose high resolution spectrometer

• Momentum resolution:

0.4% at 5 GeV to 0.6% at 100 GeV

Vertex resolution:

 $σ_{xv}$:10-50 μm, $σ_{z}$: 100-300 μm

• Track impact parameter resolution:

13 -20 µm

• Particle ID:

Muon ID ϵ =97%; mis-id: 0.7% Kaon ID ϵ =90%; π mis-id< 5%

- 2010 36 pb⁻¹@ 7 TeV
- 2011 1 fb⁻¹ @ 7 TeV
- 2012 2 fb⁻¹ @ 8 TeV
- 2013 2 nb⁻¹ @ 5 TeV proton-lead

Since 2011: Luminosity levelling: Continuous adjusting of beam overlap → roughly constant luminosity → stable running conditions High data taking efficiency:>90%

 3.5
 -

LHCb Average Instantaneous Lumi at 3.5 TeV in 2011

LHCb Average Mu at 3.5 TeV in 2011

Introduction Z production Z plus jet Z plus D in proton-ion collisions Inclusive W production

Theoretical motivation

W and Z production at LHCb

LHCb forward kinematics:

- @ first order, collision of a sea and a valence quark
- \rightarrow asymmetry in production rate for W $^{\scriptscriptstyle +}$ and W $^{\scriptscriptstyle -}$

 \rightarrow sensitivity to structure of the proton: parton distribution functions (PDF)

PDF : $f_q(x,Q^2)$ probability, that proton contains a parton q with momentum fraction x Q: invariant mass of parton interaction

LHCb probes two distinct regions in x-Q²: $x_{1,2}^{2}=(Q/\sqrt{s}) e^{\pm y}$

Unique region at low x

- W, Z production: x= 1.7 • 10⁻⁴
- complementary to ATLAS/CMS
- low mass Drell-Yan production x= 8.10⁻⁶ at m=5 GeV
- \rightarrow valuable input for the extraction of PDF

Theoretical uncertainties due to PDF

$$\underbrace{\sigma(x,Q^2)}_{hadronic\ x-sec.} = \sum_{a,b} \int_{0}^{1} dx_1 dx_2 \underbrace{f_a(x_1Q^2)f_b(x_2Q^2)}_{PDFs\ 2-8\%} \underbrace{\hat{\sigma}(x_1,x_2,Q^2)}_{partonic\ x-sec.:\ NNLO}$$

Theoretical predictions:

- cross-sections known at NNLO to %-level
- PDF uncertainty dominates at large rapidities 3% at y <2, 6-8% at y~5
- low masses: uncertainties much larger

Seminar, Heidelberg, July 8, 2014

Theoretical uncertainties due to PDF

Cancel or highlight PDF uncertainties with ratios

- many systematic uncertainties cancel
- theoretical uncertainties partially cancel
- $A_W = (d\sigma(W^-) d\sigma(W^-))/(d\sigma(W) + d\sigma(W^-))$

tests valence quarks: difference btw. $u_{\rm v}$ and $d_{\rm v}$

• $R_{+}=d\sigma(W^{+})/d\sigma(W^{-})$

tests valence quarks: u_v/d_v ratio

• $R_{WZ} = d\sigma(W^{+-})/d\sigma(Z)$ almost insensitive to PDFs precise test of SM

Plot from Thorne et al. (arXiv:0808.1847)

Seminar, Heidelberg, July 8, 2014

Inclusive Z measurements

 $Z \to \mu \mu$

φ-z view (Radius=z)

Seminar, Heidelberg, July 8, 2014

Z→ee

 $Z{\rightarrow}\tau\tau\rightarrow e\mu$

Seminar, Heidelberg, July 8, 2014

LHCb-CONF-2013-007

0.5

0

1.5

2.5

2

3.5

3

Katharina Müller

4.5 y(Z)

Z plus jet production

Jet reconstruction

- anti- k_{τ} algorithm(R=0.5)
- particle-flow objects: charged tracks and neutral clusters

Z plus jet selection

- standard selection for the Z
- jet 2<η<4.5, p₇>10 (20 GeV)
- jet-muon separation: $\Delta r(jet,\mu) > 0.4$

Jet energy correction

- from simulation: 0.9-1.1
- validated in data: Z plus 1 jet events
- simulation describes data well

Dominant systematic uncertainties

- jet energy scale and resolution
- jet reconstruction efficiency

Seminar, Heidelberg, July 8, 2014

Z plus jet production

Jets: anti-k_{τ} (R=0.5), 2< η <4.5, p_{τ}>10 (20 GeV), Δr (jet, μ)>0.4 Dominant uncertainties: jet energy scale and resolution, jet reconstruction efficiency

 $p_{T(jet)}$ >10 GeV: $\sigma = 16.0 \pm 0.2(stat) \pm 1.2(syst) \pm 0.6(lumi)$ pb $p_{T(jet)}$ >20 GeV: $\sigma = 6.3 \pm 0.1(stat) \pm 0.5(syst) \pm 0.2(lumi)$ pb

Predictions:

POWHEG+PYTHIA at $O(\alpha_s)$ and $O(\alpha_s^2)$ and different PDF sets FEWZ $O(\alpha_s^2)$ not corrected for hadronisation and underlying event

Z plus jet: differential cross sections

Shapes well described by NLO predictions LO fails to describe $\Delta \phi(Z,jet)$

Katharina Müller

17

Yields information on charm PDF and charm production mechanisms Contribution from single-(SPS) and double-parton scattering (DPS)

Selection

standard Z selection $D^0 \rightarrow K^- \pi^+, D^+ \rightarrow K^- \pi^+ \pi^+$ $2 < p_T^{-D} < 12 \text{ GeV}$ $2 < \eta^D < 4$ Z and D from same vertex

7 Z plus D⁰ and 4 Z plus D⁺ candidates combined significance: 5.1 σ no $\Lambda_c^+ \rightarrow pK\pi$, $D_s^+ \rightarrow \Phi\pi^+$

Z plus D: backgrounds

- charmed hadrons from B-decays (dominant)
- real Z and D from different vertices
- combinatorial background: from 2d fit to mass distributions

2D mass distribution with PDF for signal and background

• purity is high about 95%

JHEP04 (2014) 091

$$\sigma(Z \rightarrow \mu\mu, D^{\circ}) = 2.50 \pm 1.12(\text{stat}) \pm 0.22(\text{syst}) \text{ pb}$$

 $\sigma(Z \rightarrow \mu\mu, D^{+}) = 0.44 \pm 0.23(\text{stat}) \pm 0.03(\text{syst}) \text{ pb}$

Predictions

Single parton scattering (SPS) from MCFM Double parton scattering (DPS): σ (DPS)=(σ (Z \rightarrow µµ) σ (D))/ σ _{eff} σ _{eff} = 14.5 ± 1.7 ^{+1.7}_{-2.5} mb (CDF)

Sum of SPS and DPS expected to describe signal

- consistent for Z plus D⁰
- Z plus D⁺ below expectation

 \rightarrow differential measurements with high statistics will allow to disentangle SPS and DPS contributions

MCFM: J. M. Campbell and R. K. Ellis, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10, arXiv:1007.3492.

Seminar, Heidelberg, July 8, 2014

Ratio of nuclear PDF (gluon) for Pb to bare proton PDF [arXiv:1401.2345]

Nuclear PDF (nPDF) poorly constrained at high and low x_A , where measurements at LHCb have a good sensitivity.

 x_{a} :momentum fraction of a parton inside the nucleon

Forward: proton beam in LHCb direction, backward: lead beam in LHCb direction

Seminar, Heidelberg, July 8, 2014

Z production in proton-lead

Forward: pA collisions

proton beam: ²⁰⁸Pb beam: cms energy: shift in rapidity: Luminosity: $E_p = 4 \text{ TeV}$ $E_N = Z E_p \approx 1.58 \text{ TeV}$ $\sqrt{s_{pN}} \approx 5.02 \text{ TeV}$ $\Delta y = -1/2 \ln Z/A \approx 0.47$ $1.099 \pm 0.021 \text{ nb}^{-1}$

11 candidates y_{Lab} Candidates / (2 GeV/ c^2) 2 3 Candidates / 0.20 LHCb LHCb 4 $p Pb \sqrt{s_{NN}} = 5 TeV$ $p \operatorname{Pb} \sqrt{s_{NN}} = 5 \operatorname{TeV}$ forward forward 0^E 60 0 80 100 120 2 3 5 $m_{\mu^+\mu^-} \, [{\rm GeV}/c^2]$ y

Z production in proton-lead

Backward: Ap collisions

proton beam: ²⁰⁸ Pb beam: cms energy: shift in rapidity: Luminosity: $E_p = 4 \text{ TeV}$ $E_N = Z E_p \approx 1.58 \text{ TeV}$ $\sqrt{s_{pN}} \approx 5.02 \text{ TeV}$ $\Delta y = -1/2 \text{ In } Z/A \approx 0.47$ $0.521 \pm 0.011 \text{ nb}^{-1}$

4 candidates

Seminar, Heidelberg, July 8, 2014

Z production in proton-lead

Efficiencies, purity from data (purity >0.995) Cross sections:

forward: $\sigma_{Z(\rightarrow \mu^+ \mu^-)} = 13.5^{+5.4}_{-4.0} \text{ (stat.)} \pm 1.2 \text{ (syst.)}$ backward: $\sigma_{Z(\rightarrow \mu^+ \mu^-)} = 10.7^{+8.4}_{-5.1} \text{ (stat.)} \pm 1.0 \text{ (syst.)}$

Theoretical predictions: NNLO calculations (FEWZ) nuclear modification: EPS09(NLO)

future higher statistics measurements will provide important information on nuclear PDFs

FEWZ: Y. Li and F. Petriello, Phys. Rev. D86 (2012) 094034, arXiv:1208.5967.

EPS09: K. Eskola, H. Paukkunen, and C. Salgado, JHEP 04 (2009) 065, arXiv:0902.4154.

Seminar, Heidelberg, July 8, 2014

Katharina Müller

Fiducial volume muons: p_{T} >20 GeV, 2<η<4.5 mass: 60<M(µµ)<120 GeV²

W production in pp @ 7 TeV

W selection: one (isolated) muon

- Muon: one muon 20<p_{_{T}} < 70 GeV/c, 2.0 < $\eta_{_{\mu}}$ < 4.5
- Isolation E_{T}^{cone} <2 GeV (Cone R<0.5 around μ) p_{T}^{cone} <2 GeV/c

Cuts against background:

- from semi-leptonic decays of heavy flavour Impact parameter < 40 μm
- γ^*/Z : No other muon with p_{τ} >2GeV
- K/π punch through E(Calorimeter)/p<0.04

Main background:

kaon, pion decay in flight $\gamma^*/Z \rightarrow \mu\mu$, one muon in acceptance

LHCb-PAPER-2014-022

Purity from fit to p_{τ} distribution

simultaneously in 8 η bins and both charges

	Shape	Norm.
W →µv	simulation	fit
K/ π decay in flight	ata	fit
γ*/Z→μμ	simulation	fixed
W→tv , Z→tt	simulation	fixed
Heavy Flavour	data	fixed

Normalisation

- signal and decay in flight: fitted
- others : fixed from data

Purity: $(77.17 \pm 0.19)\%$ for W ⁺

(77.40 \pm 0.23)% for W $^{\text{-}}$

Seminar, Heidelberg, July 8, 2014

Comparison to NNLO predictions with six different PDF sets

Seminar, Heidelberg, July 8, 2014

Comparison to ATLAS: LHCb measurements corrected to account for the additional cuts: E_{Tmiss} >25 GeV, M_{T} >40 GeV

 \rightarrow good agreement in overlap region

W: lepton charge asymmetry

W: lepton charge asymmetry

Seminar, Heidelberg, July 8, 2014

Katharina Müller

31

Introduction J/ Ψ , Ψ (2S) $\rightarrow \mu\mu$ Outlook

Seminar, Heidelberg, July 8, 2014

CEP: Introduction

Exchange of a colourless object: γ , pomeron

- \rightarrow two muons (+ photon) + rapidity gaps
- \rightarrow protons escape undetected in beampipe

LPAIR A.G.Shamov and V.I.Telnov, NIM A 494 (2002) 51 Starlight S.R.Klein and J.Nystrand, Phys. Rev. Lett. 92 (2004) 142003

SuperChiC: MC for CEP

L.A.Harland-Lang, V.A.Khoze, M.G.Ryskin, W.J.Stirling, arXiv:0909.4748[hep-ph]

Resonant production

 \rightarrow sensitivity to gluon distribution at low Bjorken-x (5 ·10⁻⁶) Non-resonant production: pure QED process, precisely known \rightarrow could be used for luminosity measurement

Seminar, Heidelberg, July 8, 2014

Sensitivity to gluon PDF in a region which is poorly constrained

Seminar, Heidelberg, July 8, 2014

Silicon strip vertex detector R and ϕ sensors

Pileup stations

Forward: $1.5 < \eta < 5.0$ Backward: $-3.5 < \eta < -1.5$

Backwards tracks re-constructable (no momentum information)

Rapidity gap coverage

forward: 2 gaps, sum of 3.5 backward: \sim 1-2 units, depending on z vertex position

Seminar, Heidelberg, July 8, 2014

Signature

- Two muons
- No other activity in event
- di-muon system: low $p_{_{T}}$

Trigger:

• Hardware:

one μ (p_T> 400 MeV)

or two μ (p₇> 80 MeV)

low multiplicity in scintillator pad detector in front of calorimeter

Software:

di- μ candidate with p_T< 900 MeV or M($\mu\mu$) > 2.7 GeV

VELO 8.4 cm

Exclusive di-muon selection

LHCb

20

Triggered: two μ , little activity in calorimeter

Exclusive: two forward, no backward tracks

10

Triggered

Number of events 10000 0000 0000

4000

2000

0

0

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

Selection

- event with one interaction:
 24% of total luminosity
- precisely two forward muons
- no backward tracks
- no photons
- p_T² (μμ)< 0.8 GeV²
- $M(\mu\mu)$ within 65 MeV of nominal mass
- $\rightarrow 55985$ J/ ψ and 1565 $\psi(2s)\,$ candidates

Backgrounds

- non resonant: small (0.8±0.1)% for J/ ψ and (17.0±0.3)% ψ (2s)
- feed down: J/ψ : (7.6 ± 0.9)% from χ_c and (2.5 ± 0.2)% from ψ (2s)

 $\psi(2s)$: (2.0 ± 2.0)% from X(3872)

• dominant: inelastic background with extra particles out of LHCb acceptance

Seminar, Heidelberg, July 8, 2014

Backgrounds from feed down – J/ψ only

• From $\chi_c \rightarrow J/\psi \gamma$:

suppressed: no photons

estimate residual background from SuperChic, normalised to data

contribution: $(7.6 \pm 0.9)\%$

• From $\psi(2s) \rightarrow J/\psi X$:

suppressed: exactly two tracks estimated from scaling MC simulation to measured ratio

contribution: (2.5 ± 0.2) %

CEP: Inelastic background

Proton dissociation or gluon radiation \rightarrow estimated from data: fit p_{τ}^{2} distribution

- <u>signal</u> and in<u>elastic background: exponential</u>
- feed-down: shape from data $\chi_{_{\rm c}} \to J/\psi\gamma$ and $\psi(2S) \to J/\psi\pi\pi$
- fit slope and normalization of signal and background

slope b agrees well with expectation from HERA:

LHCb expected from HERA $b_s \sim 6 \text{ GeV}^{-2}$ $b_b \sim 1 \text{ GeV}^{-2}$

LHCb Fit: $b_s = 5.70 \pm 0.11 \text{ GeV}^{-2}$ $b_b = 0.97 \pm 0.04 \text{ GeV}^{-2}$

iation tribution , J/w ggggg g

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

CEP: Inelastic background

Proton dissociation or gluon radiation \rightarrow estimated from data: fit p_{τ}^{2} distribution

- <u>signal</u> and in<u>elastic background: exponential</u>
- feed-down: shape from data $\chi_{_{C}} \rightarrow J/\psi\gamma$ and $\psi(2S) \rightarrow J/\psi\pi\pi$
- fit slope and normalization of signal and background

Seminar, Heidelberg, July 8, 2014

Katharina Müller

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

Cross section times BF to two muons with $2.0 < \eta < 4.5$

$$\sigma(J/\psi) = 291 \pm 7(stat) \pm 19(syst) \, pb$$

 $\sigma(\psi(2S)) = 6.5 \pm 0.9(\text{stat}) \pm 0.4(\text{syst}) \text{ pb}$

in good agreement with predictions

 G&M:
 Phys. Rev. C84 (2011) 011902

 JRMT:
 JHEP 1311 (2013) 085

 M&W:Phys.
 Rev. D78 (2008) 014023

 Sch&SPhys. Rev. D76 (2007) 094014
 Starlight:

 Starlight:
 Phys. Rev. Lett. 92 (2004) 142003

 Superchic:
 Eur. Phys. J. C65 (2010) 433

CEP: differential cross section

• prediction from Jones, Martin, Ryskin and Teubner arXiv:1307.7099

shape better described by NLO prediction

also described by models including saturation (arXiv:1305.4611, PhysRevD.78.014023)

 J/Ψ production cross section measured as a function of rapidity (10 bins) \rightarrow results can then be compared to H1/ZEUS data using known photon flux for a photon of energy k correcting for gap survival

 $\frac{dn}{dk} = \frac{\alpha_{cm}}{2\pi k} \left[1 + \left(1 - \frac{2k}{\sqrt{s}}\right)^2\right] \left(\log A - \frac{11}{6} + \frac{3}{A} - \frac{3}{2A^2} + \frac{1}{3A^3}\right) \text{ photon energy spectrum}$

for each rapidity bin two solutions for W (photon-proton cm energy)

CEP: yp cross-section

48

Compare to HERA yp data using known photon flux for a photon (energy k)

Work ongoing with other final states, also in hadronic channels

10.3204/DESY-PROC-2012-03/58

Seminar, Heidelberg, July 8, 2014

Increase rapidity gap with scintillators in forward and backward region

Detect showers from high rapidity particles interacting with beam pipe elements

- \rightarrow improve veto on inelastic background
- \rightarrow better control of the background
- \rightarrow better precision

Simulations studies suggest veto region for charged and neutral particles can be extended to include $5 < |\eta| < 8$ - an extra 6 units in pseudorapidity.

HeRSCheL: High Rapidity Shower Counters for LHCb

Five Stations: three backwards, two forward

Detectors four plastic scintillator plates, 20 mm thick - retractable Installation: starting in August

 \rightarrow Expect improvements in triggering and background rejection

for CEP events for the run starting in 2015

Z production

Z plus jet: first LHCb measurement with jets

Z plus D: first observation in pp collisions

increased statistic: sensitivity to disentangle

SPS and DPS contribution

Z in proton-lead collisions: first results, sensitivity to nuclear PDF

W production

Precise new measurements, valuable input for PDF fits

Tracks

Interaction

Poin

Central exclusive production

J/ ψ and ψ (2S), sensitive to gluon PDF and shadowing more results to be expected soon with di-muon and hadronic final states increased sensitivity after shutdown (new scintillator detectors)

 \rightarrow Many more interesting measurements to come!

Backup slides

Seminar, Heidelberg, July 8, 2014

Katharina Müller

53

Flexible Trigger

- Hardware trigger: L0 40→14 MHz
 information from calorimeter and muon system
- Two software trigger stages

 $14MHz \rightarrow 950 \text{ kHz}$

- Ability to trigger on low transverse momentum particles: $p_{T}^{\mu} > 1.5 \text{ GeV}$
- Special triggers for low multiplicity events

Full list of QCD results

ENSIS

Measurement of charged particle multiplicities and densities	arXiv:1402.4430
Prompt charm production at \sqrt{s} = 7 TeV	Nucl. Phys. B 871 (2013) 1-20
Measurement of the forward energy flow at \sqrt{s} = 7 TeV	Eur. Phys. J. C73 (2013) 2421
Measurement of Y production in pp collisions at \sqrt{s} = 2.76 TeV	accepted by EPJC arXiv:1402.2539
Measurement of V0 production ratios at \sqrt{s} = 0.9 and 7 TeV	Eur. Phys. J. C 72 (2012) 2168
Measurement of the B± production cross-section at \sqrt{s} =7 TeV	JHEP 04 (2012) 093
Measurement of the inclusive φ cross-section at \sqrt{s} = 7 TeV	Phys. Lett. B 703 (2011) 267
Prompt K0S production at \sqrt{s} = 0.9 TeV	Phys. Lett. B 693 (2010) 69
W&Z production studies at \sqrt{s} = 7 TeV	JHEP 06 (2012) 058
$Z \rightarrow$ tau tau production at \sqrt{s} = 7 TeV	JHEP 01 (2013) 111
$Z \rightarrow ee \text{ production at } \sqrt{s} = 7 \text{ TeV}$	JHEP 02 (2013) 106
$Z \rightarrow \mu \mu$ + jet production at \sqrt{s} = 7 TeV	JHEP 1401 (2014) 033
Z plus D production at \sqrt{s} = 7 TeV	JHEP 04 (2014) 91
Measurement of the cross-section for $Z \rightarrow \mu \mu$ at s $\sqrt{-7}$ TeV	LHCb-CONF-2013-007
Low mass Drell Yan production at \sqrt{s} = 7 TeV	LHCb-CONF-2012-013
Graphical comparison of W and Z results with ATLAS and CMS	LHCb-CONF-2013-005
Exclusive J/ Ψ and $\Psi(2S)$ production in the dimuon channel \sqrt{s} = 7	J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002
Measurement of σ (bbbar) with inclusive final states	LHCb-CONF-2013-002
Inclusive jets and dijets	LHCb-CONF-2011-015

SEP of J/ Ψ and $\Psi(2S) \rightarrow \mu\mu$

Exchange of a colourless object: γ , pomeron

- \rightarrow two muons + rapidity gaps
- \rightarrow protons escape undetected in beampipe

High rapidities 2-5

- complementary to ATLAS/CMS
- sensitivity to x values 5 ·10⁻⁶

VELO acceptance

forward: $1.5 < \eta < 5.0$ backward: $-3.5 < \eta < -1.5$ no momentum information

Rapidity gap coverage forward: 2 gaps, sum of 3.5 backward: ~ 1-2 units, depending on z vertex position

Seminar, Heidelberg, July 8, 2014

Katharina Müller

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

Correlated uncertainties expressed as a percentage of the final result		
€sel	1.4%	
Purity determination (J/ψ)	2.0%	
Purity determination $(\psi(2S))$	13.0%	
*€ _{single}	1.0%	
*Acceptance	2.0%	
*Shape of the inelastic	5.0%	
background		
*Luminosity	3.5%	
Total correlated statistical uncertainty (J/ψ)	2.4%	
Total correlated statistical uncertainty ($\psi(2S)$)	13.0%	
Total correlated systematic uncertainty	6.5%	