

## QCD results at LHC

Katharina Müller on behalf of the ATLAS, CMS and LHCb collaborations

University of Zurich











#### talk presents recent results on production of

- jets
- isolated photons
- top
- vector bosons

#### does not cover

- multibosons
- heavy ion
- Higgs
- diffraction
- ..



ATLAS high mass central dijet event — M= 6.9 TeV https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Collisions



## Coverage of LHC detectors



#### ATLAS and CMS:

precision tracking and muon identification in central region forward calorimetry - measurements of electrons and jets for  $|\eta| < 5$ 

#### • LHCb:

coverage for  $\eta > 2$  – excellent tracking and particle identification low  $p_{\tau}$ , low mass triggers

→ complementary measurements



precision QCD measurements

- standard candles background for New Physics and Higgs
- → important validation of ME+PS MC Generators
- sensitive to parton density functions (PDFs)
  - → constrain PDFs
- precision tests of pQCD



## Jets the experimental signatures of quarks and gluons





## What can we do with jets?

jets result from fragmentation of quarks and gluons in a short-distance scattering process

#### are powerful probes of QCD:

- explore pQCD in brand new energy regions
- yield information on structure of the proton
- probe and measure  $\alpha_s$
- access to dynamics of heavy flavors
- compare to NLO/NNLO predictions
- tune Monte Carlo Generators

#### there is more than QCD:

- extensive test of the Standard Model: V+Jets, H+Jets, V+heavy flavors...
- jets are background for most of the searches
- beyond the Standard Model:
  - dijet resonances
  - monojet & dark matter
  - new strongly produced states
  - hadronic resonances



CMS multijet event: 12 jets with  $p_T > 50$  GeV, and the mass of the system is 6.4 TeV http://cms.web.cern.ch/news

## Inclusive jets and dijets @ 13 TeV

ATLAS JHEP 05 (2018) 195

10<sup>12</sup>

anti-k, R=0.4

√s = 13 TeV, 81 nb<sup>-1</sup> - 3.2 fb<sup>-1</sup>

dy [pb/GeV]

 ${\sf d}^2 \sigma / {\sf d} p_{_{
m T}}$  (

 $p_{\tau}(jet) > 75 \text{ GeV}$ , anti- $k_{\tau}$  R=0.4, modified Bayesian unfolding double differential x-section: inclusive  $(p_{\tau},y)$ , di-jet  $(m_{ij},\Delta y)$ dominant syst. uncertainty: jet energy scale compared to: NLOJet++ using CT14, MMHT, NNPDF3.0 overall good agreement for di-jets slight underestimation at high  $\boldsymbol{p}_{\scriptscriptstyle T}$  and high  $\boldsymbol{y}$ 

CMS: Eur. Phys. J. C 76 (2016) 451





## Inclusive jets @ 13 TeV

CMS: Eur. Phys. J. C 76 (2016) 451

 $p_{-}(jet)>114 \text{ GeV}$ , anti- $k_{-} R=0.4$  and R=0.7 $dp_T dy$ 







- R = 0.4 x-section overestimated by about 5-10%
- R=0.7: better description → PS and soft-gluon resummation contributions. which are missing in fixed-order calculations are more relevant for smaller jet cone sizes

comparison to MC generators 0.5 < |y| < 1.0



2.0 < |y| < 2.5



POWHEG+Pythia good agreement HERWIG++:

good in shape, poor in scale Pythia 8

does describe shape for y<2.0

## Jet charge Q

CMS JHEP 10 (2017) 131 ATLAS Phys. (2016) Rev. 052003 D93

Q: estimator for charge of parton initiating the jet
→ momentum weighted sum of charges

$$Q^{\kappa} = \frac{1}{p_T^{\kappa}(jet)} \sum_{i} Q^{i}(p_T^{i})^{\kappa}$$

 $\kappa$  controls rel. weight of low and high  $p_{\tau}$  particles









unfolded jet charge,  $p_T$ > 400 GeV compared to (N)LO predictions Powheg+Pythia8, Powheg+Herwig++

- Q unaffected by NLO effects, ISR or MPI
- FSR narrows the distribution
- data slightly broader than predictions

(similar: ATLAS Phys. (2016) Rev. 052003 D93)

$$Q^{j} = \frac{1}{p_{T}^{\kappa}(jet)} \sum_{i} Q^{i}(p_{T}^{i})^{\kappa}$$







## Strong coupling constant $\alpha_s$

 $p_{T}(jet)$ >20GeV,  $|\eta|$ <4.7, anti- $k_{T}$  – R=0.4

from double-diff x-section at 8 TeV

theoretical comparison: CT10 NLO x NP x EW PDF (NP: non perturbative)

QCD fit  $\rightarrow$  parton density functions and  $\alpha_s$ 

$$\alpha_s(M_Z) = 0.1164^{+0.0014}_{-0.0015}(\exp)^{+0.0025}_{-0.0029}(NP)^{+0.0053}_{-0.0028}(scale) = 0.1164^{+0.0060}_{-0.0043}$$



## Di-jet azimuthal decorrelation and $\alpha_{_{\varsigma}}$ @ 8 TeV

ATLAS arXiv:1805.04691

 $\alpha_s$  from cross-sections: affected by knowledge of PDFs and their Q dependence

→ dependence on normalization group equations, used in PDF extraction

cross-section ratios: PDF uncertainty cancels to a large extend

 $\rightarrow$  theoretical cleaner extraction of  $\alpha_s$  and its running

jet algorithm: anti- $k_{\tau}$  R=0.6

large enough to include soft and hard radiation, but avoiding underlying event

measure R( $\Delta\Phi$ ): fraction of di-jet events in which  $\Delta\Phi < \Delta\Phi_{max}$ 

$$R_{\Delta\phi}(H_{\rm T}, y^*, \Delta\phi_{\rm max}) = \frac{d^2\sigma_{\rm dijet}(\Delta\phi_{\rm dijet} < \Delta\phi_{\rm max})}{dH_{\rm T} dy^*} = \frac{d^2\sigma_{\rm dijet}({\rm inclusive})}{dH_{\rm T} dy^*}$$

 $H_T$ : transverse momentum sum,  $y^*=|y_1-y_2|/2$ 



## Di-jet azimuthal decorrelation @ 8 TeV

ATLAS arXiv:1805.04691

 $\alpha_s$  extracted from measurement of R( $\Delta \phi$ ) with  $\Delta \phi_{max} = 7\pi/8$ ,  $0 < y^* < 0.5$  and  $0.5 < y^* < 1.0$ .

| $\alpha_{\rm S}(m_Z)$ | Total uncert. | Statistical | Experimental correlated | Non-perturb.<br>corrections | MMHT2014<br>uncertainty | /            | $\mu_{\scriptscriptstyle  m R,F}$ variation |
|-----------------------|---------------|-------------|-------------------------|-----------------------------|-------------------------|--------------|---------------------------------------------|
| 0.1127                | +6.3<br>-2.7  | ±0.5        | +1.8<br>-1.7            | +0.3<br>-0.1                | +0.6<br>-0.6            | +2.9<br>-0.0 | +5.2<br>-1.9                                |

$$\alpha_s(M_Z) = 0.1127^{+0.0063}_{-0.0027}$$







# Isolated Photons unique colorless probe to test pQCD predictions





## Isolated photons (plus jets) @ 13 TeV

dominant production process:  $qg \rightarrow qy \rightarrow constrain$  on gluon at medium x, x~0.1

isolated photons: background for many searches → important to understand production and MC modeling

CMS:  $E_{T}(\gamma) > 190$  GeV,  $|y(\gamma)| < 2.5$ , BDT for separation of signal and backgrounds

agreement with NLO JETPHOX predictions within uncertainties but large uncertainties due to missing higher order terms in pQCD

#### inclusive measurement



#### photon plus jet (E<sub>T</sub>>30 GeV)





## **NNLO** predictions

NNLO calculations now available

Campbell, Ellis and Williams, Phys. Rev. Lett. 118 (2017) 222001 [arXiv:1612.04333]

Campbell, Rojo, Slade and Williams, EPJC 786 (2018) 470 [arXiv: 1802.03021]





- → theory uncertainties reduced by a factor 2
- → new opportunities for precision QCD and inclusion of photon data into PDF fits

two contributions to cross-section: direct and fragmentation cross-section as function of  $\theta^* \rightarrow$  insight into relative contributions of direct vs fragmentation components, and testing of dominance of t-channel quark exchange





shape agrees better with direct contribution

→ in agreement with expectation of process with quark exchange

## Photon plus b/c @ 8 TeV

ATLAS Phys. Lett. B 776 (2018) 295

sensitive to heavy quark content of proton, test of HF modeling in MC generators





HF yield extracted from a template fit to the distribution of the discriminant

- LO and NLO give a good description
- $\underline{\text{5F scheme better agreement than 4F at high E}_{\text{T}}$
- predictions with intrinsic charm (BHPS1/2) higher at high  $E_{\scriptscriptstyle \perp}$





## Top quarks focussing on tt-bar production



## Top production @ LHC

ATLAS STDM-2014-09 CDF note 11180



rich phenomenology  $\rightarrow$  test of SM predictions, sensitivity to PDF,  $\alpha_s$ ,  $m_t$  background for many searches (SUSY, ttH, ...)

but: calculations are challenging: NNLO/NNLL corrections important





## Forward top pair production @ 13 TeV

LHCb arXiv: 1803.05188

forward: enhanced qq-bar contribution

- → larger charge asymmetry
- → better sensitivity to New Physics

sensitive to PDF at large and low x previously measured at 7+ 8 TeV 13 TeV 10 times higher x-section

#### µeb channel:

isolated prompt  $\mu$ ,e, one b-jet b-tagging: secondary vertex in jet  $p_{\tau}(l) > 20$  GeV and  $p_{\tau}(jet) > 20$  GeV  $\Delta R(l,J) > 0.5$ ,  $\Delta R(\mu,e) > 0.1$ 



→ 44 candidates, 86% purity main background QCD multijets





## First observation of forward top @ 13 TeV

LHCb arXiv: 1803.05188

$$\sigma(t \, \overline{t}) = 126 \pm 19(\text{stat}) \pm 15(\text{syst}) \pm 5(\text{lumi}) \text{fb}$$

20% precision, compatible with the SM within  $2\sigma$  dominating systematic uncertainty: jet tagging: 10%



#### syst. uncertainties

|   | Source             | %    |
|---|--------------------|------|
|   | trigger            | 2.0  |
|   | muon tracking      | 1.1  |
|   | electron tracking  | 2.8  |
|   | muon id            | 0.8  |
|   | electron id        | 1.3  |
|   | jet reconstruction | 1.6  |
| - | jet tagging        | 10.0 |
|   | selection          | 4.0  |
|   | background         | 5.1  |
|   | acceptance         | 0.5  |
| - | total              | 12.7 |

LHCb upgrade: measurement not statistically dominated → very promising channel for tt-bar studies



## Differential tt-bar +jets @ 13 TeV

top reconstructed in lepton plus jets channel sensitive to gluon radiation study 4,5 and 6 jets samples separately

 $p_{T}(t,had)$  with 4 jets



 $p_{T}(tt-bar)$  with 6 jets



measurements have potential to further constrain the models:  $p_{\tau}(t,had)$  with 4 jets underestimated at high  $p_{\tau}(t,had)$   $p_{\tau}(tt-bar)$  disfavours some models



## Underlying event in tt-bar @ 13 TeV

underlying event (UE): partons not participating in hard scattering process, multiple parton interactions, gluon radiation

electron, muon + 2b-jets  $\rightarrow$  first measurement of UE properties at Q up to  $2m_t$  various variables investigated ( $N_{ch}$ ,  $p_{\tau}$ , sphericity, ...), various event categories

- UE event: typically 20 charged particles, average  $p_{\tau}$  and  $p_{\tau}$  about 2 GeV
- Powheg+Pythia gives a good description
- models with MPI switched off and default Sherpa (○), Herwig (△,▼) configuration disfavoured
- no dependence on ME (Powheg or Madgraph5aMC@NLO)







## Vector bosons standard candles of the Standard Model



## Forward Z → bb-bar @ 8 TeV

LHCb: Phys. Lett. B776 (2017) 430-439

- standard candle of the SM: background for many new physics processes, Hbb
- first measurement in forward region ever made!
- challenging measurement, huge QCD background → MVA for separation
- 2 b-tagged jets,  $p_T$ >20 GeV and 45 <  $m_{_{11}}$ < 165 GeV;  $\Delta \phi$ (bb)<2.5
- simultaneous fit to dijet mass in signal and control regions







no correction for radiation

Dijet Mass [GeV]

$$\sigma(pp \rightarrow Z) B(Z \rightarrow b\overline{b}) = 332 \pm 46(\text{stat}) \pm 50(\text{syst}) \text{pb}$$
  
 $\sigma(pp \rightarrow Z) B(Z \rightarrow b\overline{b}) = 272^{+9}_{-12}(\text{scale}) \pm 5(\text{PDF}) \text{pb}(\text{aMC@NLO})$ 



## Forward $Z \rightarrow \tau^+\tau^- @ 8 \text{ TeV}$

LHCb: arXiv:1806.05008

- probe of high energy tau reconstruction at LHCb
- reconstruction in leptonic (electron, muon) or hadronic (one or three) final state 7 streams: ee,  $\mu\mu$ , e $\mu$ ,  $\mu h_1$ ,  $\mu h_3$ , eh<sub>1</sub>, eh<sub>3</sub>
- main backgrounds: data driven techniques
- signal yield: data expected background



LHCb: arXiv:1806.05008

fiducial region: 2.0< $\eta(\tau)$ <4.5, pT( $\tau$ )>20 GeV, 60<M( $\tau\tau$ )<120 GeV measurements agree with each other, compatible with NNLO predictions





## Z+jets @ 13 TeV

high cm energy allows production of a large number of jets, background for tt-bar, Higgs, ... main background at large jet multiplicities: tt-bar and diboson



MC generators: LO (MG5\_aMC+PY8 CKKWL) predicts too hard  $p_{\tau}$  distribution



## Z+jets @ 13 TeV

CMS: arXiv:1804.05252

measurement of the transverse momentum balance between Z and the jets, sensitive to soft gluon radiation

multiparton predictions:

- NLO: good
- LO: softer distribution
- → NLO corrections important
- Geneva: NNLO Z prod.
   +NNLL resummation

fails to describe distribution for  $N_{\text{jet}} > 1$ 

**NLO** 

LO

Geneva





## Z+di-jets @ 13 TeV

ATLAS: Phys. Lett. B 775 (2017) 206



EW Zjj x-section extracted in EW enriched sample high di-jet mass (M>1 TeV): Sherpa+PH, MG+PH overestimate x-section

EW contribution from fit to BDT with 6 discriminating variables (event and jet properties)



signal established → study event activity in EW enhanced region (BDT>0.92)

→ Data disfavours background only prediction

$$\sigma(EW)=552\pm19(stat)\pm55(syst)$$
 fb  
SM prediction (LO)  $\sigma(EW)=543\pm24$  fb

ATLAS-CMS results cannot be directly compared because of different phase space

CMS: Eur. Phys. J.C. (2018) 78:287

first measurement of Z plus c-jets in central region (plus ratios to Z+b jets)

- sensitivity to intrinsic charm
- $p_{T}(l) > 20 \text{ GeV}$ ,  $|\eta(l)| < 2.71,71 < m_{H} < 111 \text{ GeV}$ ,  $p_{T}(jet) > 25 \text{ GeV}$ ,  $|\eta(jet)| < 2.5$
- HF selection in three modes:



data driven techniques to control modelling and tagging efficiency

c-jets: W+c events, b-jets: tt-bar events

## Z+c-jets @ 8 TeV

CMS: Eur. Phys. J.C. (2018) 78:287

extraction of Z+c and Z+b yields from template fits to

corrected secondary vertex mass (semileptonic)

$$M_{\text{vertex}}^{\text{corr}} = \sqrt{M_{\text{vertex}}^2 + p_{\text{vertex}}^2 \sin^2 \theta + p_{\text{vertex}} \sin \theta},$$

 probability that tracks come from primary vertex (D<sup>±</sup>, D\* modes)





Comparison with predictions:

LO ( $\square$ ) and NLO ( $\mathbf{0}$ ) Madgraph: good MCFM (incl. corrections for hadronisation) is too low: missing PS and non pert. effects

sensitivity to intrinsic charm  $\nabla$  at high  $p_T(Z, jet)$  mostly through ratio to Z+b

→ experimental uncertainties too large



the LHC experiments allow for extensive tests of QCD

- many standard candle measurements important for Higgs physics and searches beyond the SM
- Measurements sensitive to structure of the protons and  $\alpha_s$
- measurements of multiple final states
  - → explore regions of phase space where current theory still struggles to match data
- systematic exploration of final states with several beam energies
  - → may improve our understanding of QCD







## Backup



## Kinematic range

$$\underbrace{\sigma(x,Q^2)}_{hadronic \, x-sec} = \sum_{a,b} \int_0^1 dx_1 dx_2 \underbrace{f_a(x_1 Q^2) f_b(x_2 Q^2)}_{PDFs2-8 \%} \times \underbrace{\hat{\sigma}(x_1, x_2, Q^2)}_{partonic \, x-sec \cdot NNTO 1.02}$$

- x-section measurements and ratios sensitive to parton density functions (PDFs)
- measurements used to constrain PDFs
   → important for e.g. searches
- LHC, HERA, Tevatron and fixed target data: wide range in x-Q<sup>2</sup> plane
- precision tests of pQCD
- background for new physics and Higgs
  - → important validation of ME+PS MC Generators





## Z+b-jets @ 8 TeV

CMS: Eur. Phys. J.C. (2017) 77:751

two categories: Z plus >0 and >1 b tagged jets b jets  $p_T$  > 30 GeV,  $|\eta|$  <2.5, Z+b unfolded to particle level several differential cross sections: angles,  $p_T$ ,  $H_T$ , bbZ and bZ system explored compared to NLO predictions by MadGraph and Powheg, 4F and 5F schemes tested

fraction of Z+b-jet vs  $p_{T}$ 



Z+2b-jets: cross-section vs M<sub>bb</sub>



- 4F scheme fails to describe fraction of b-jet events vs pT, 20% low in normalisation
- Z plus 2 b-jets in general well described



### Z → bb-bar: Jet tagging

b, c tagging with secondary vertex in jet cone two BDTs to separate

- 1) heavy from light jets (bc|udgs)
- 2) bottom from charm jets (b|c)

#### D+jet sample: enriched in b- and c-jets









powerful heavy jet tagging jets with 20 GeV <  $p_{\scriptscriptstyle T}$  < 100 GeV :

- efficiency of b-jet tagging ~ 65%
- efficiency of c-jet tagging ~ 20%
- misidentification of a light-jet  $\sim 0.3\%$  performance validated in data

ATLAS & CMS: several taggers based on tracks, muon, SV using MVA and NN

CERN-CMS-DP-2017-005, CMS-PAS-BTV-15-001 ATL-PHYS-PUB-2017-013, ATLAS-FTAG-2017-003



### Differential tt-bar @ 13 TeV

lepton + jets channel: absolute and normalised cross sections particle level (fiducial phase space), parton level (full phase space) compared to several SM predictions

- reasonable description of kinematic variables of the top quarks and the tt-bar system
- no prediction describes all the measured distributions
- largest deviation  $p_{\tau}(t)$ : softer than predicted





## Underlying event in tt-bar @ 13 TeV

sphericity for different event categories

- UE is anisotropic (S<1)</li>
- no extra jet: UE more isotropic
- MPI contribution is crucial
- sensitivity to colour reconnection





## Strong coupling constant $\alpha_s$

 $p_{_{T}}(jet)>100GeV, |\eta|<2.5, anti k_{_{T}}-R=0.4$ 

energy-energy correlations and their associated asymmetries in multi-jet even bins of the scalar sum of the transverse momenta of the two leading jets unfolded distributions fitted to NLO calculations

 $\alpha_s = 0.1162 \pm 0.0011$ (exp.) + 0.0084 -0.0070(th.)







#### ATLAS JINST 3 (2008) S08003



LHCb JINST 3 (2008) S08005



CMS JINST 3 (2008) S08004



| Experiment | cm energy<br>[TeV] | integrated luminosity<br>[fb <sup>-1</sup> ] |
|------------|--------------------|----------------------------------------------|
| ATLAS, CMS | 7<br>8<br>13       | 6<br>22<br>4                                 |
| ALICE      | 7<br>8<br>13       | 0.005<br>0.01<br>0.007                       |
| LHCb       | 7<br>8<br>13       | 1.0<br>2.0<br>0.3                            |
|            |                    |                                              |

ALICE: JINST 3 (2008) S08002

