

Measurements with electroweak bosons at LHCb

PANIC August 28, 2014

Katharina Müller

on behalf of the LHCb collaboration

- LHCb detector
- Measurements with electroweak bosons
 - Motivation
 - Z production
 - Z plus jets, Z plus D, Z production in proton lead
 - W production
- Conclusions

Tracks

Interaction Point_V2

Muon from Z

Fully instrumented in the forward region (2 < η < 5) some detection capability in backward region (-3.5 < η < -1.5)

- Analyses based on
 - 2011 1 fb⁻¹ @ 7 TeV:
 - 2013 proton-lead runs 2 nb⁻¹ @ 5 TeV: Z in proton lead

PANIC, Hamburg, August 28, 2014

Katharina Müller

Z plus jet, Z plus D, W production

Measurements with electroweak bosons

LHCb probes two distinct regions in x-Q²: $x_{1,2}^{2}=(Q/\sqrt{s}) e^{\pm y}$

Forward kinematics:

@ first order, collision of a sea and a valence quark

- asymmetry in production rate for $W^{\scriptscriptstyle +}$ and $W^{\scriptscriptstyle -}$
- sensitivity to parton distribution functions (PDF)

Unique region at low x

- W, Z production: $x = 1.7 \cdot 10^{-4}$
- complementary to ATLAS/CMS
- input to PDF fits in previously unprobed region

Inclusive Z measurements

Z plus jet production

PANIC, Hamburg, August 28, 2014

Katharina Müller

6

LHCb-CONF-2012-016

Jet reconstruction

- anti- k_{τ} algorithm(R=0.5)
- particle-flow objects: charged tracks and neutral clusters

Z plus jet selection

- standard selection for the Z
- jet 2< η <4.5, p_T>10 (20 GeV)
- jet-muon separation: $\Delta r(jet,\mu) > 0.4$

Jet energy correction

- from simulation: 0.9-1.1
- validated in data: Z plus 1 jet events
- simulation describes data well

Dominant systematic uncertainties

- jet energy scale and resolution
- jet reconstruction efficiency

Z plus jet production

 $p_{T(jet)} > 10 \text{ GeV: } \sigma = 16.0 \pm 0.2(\text{stat}) \pm 1.2(\text{syst}) \pm 0.6(\text{lumi}) \text{ pb}$ $p_{T(jet)} > 20 \text{ GeV: } \sigma = 6.3 \pm 0.1(\text{stat}) \pm 0.5(\text{syst}) \pm 0.2(\text{lumi}) \text{ pb}$

Predictions:

POWHEG+PYTHIA at $O(\alpha_s)$ and $O(\alpha_s^2)$ and different PDF sets FEWZ $O(\alpha_s^2)$ not corrected for hadronisation and underlying event

FEWZ: Y. Li and F. Petriello, Phys. Rev. D86 (2012) 094034, POWHEG: JHEP 01 (2011) 095 PYTHIA: JHEP05 (2006) 026 PANIC, Hamburg, August 28, 2014 Katharina Müller

Results not corrected for FSR Shapes well described by NLO predictions LO fails to describe $\Delta \phi(Z,jet)$

PANIC, Hamburg, August 28, 2014

Katharina Müller

9

Results not corrected for FSR Shapes well described by NLO predictions LO fails to describe $\Delta \phi(Z,jet)$

PANIC, Hamburg, August 28, 2014

Katharina Müller

10

Yields information on charm PDF and charm production mechanisms Contribution from single-(SPS) and double-parton scattering (DPS)

Selection

standard Z selection $D^{0} \rightarrow K^{-} \pi^{+}, D^{+} \rightarrow K^{-} \pi^{+}\pi^{+}$ $2 < p_{T}^{D} < 12 \text{ GeV}, 2 < \eta^{D} < 4$

Z and D from same vertex

Background: purity>95%

charmed hadrons from B-decays (dominant) real Z and D from different vertices combinatorial background

7 Z plus D^0 and 4 Z plus D^+ candidates

no
$$\Lambda_{e}^{+} \rightarrow pK\pi$$
, $D_{e}^{+} \rightarrow \Phi\pi^{+}$

JHEP04 (2014) 091

$$\sigma(Z \rightarrow \mu\mu, D^0) = 2.50 \pm 1.12(\text{stat}) \pm 0.22(\text{syst}) \text{ pb}$$

 $\sigma(Z \rightarrow \mu\mu, D^+) = 0.44 \pm 0.23(\text{stat}) \pm 0.03(\text{syst}) \text{ pb}$

Predictions

Single parton scattering (SPS) from MCFM Double parton scattering (DPS):

> $\sigma(\text{DPS}) = (\sigma(Z \rightarrow \mu\mu) \sigma(D)) / \sigma_{\text{eff}}$ $\sigma_{\text{eff}} = 14.5 \pm 1.7 ^{+1.7}_{-2.5} \text{ mb} \text{ (CDF)}$

Sum of SPS and DPS expected to describe signal

- consistent for Z plus D⁰
- Z plus D⁺ below expectation

 \rightarrow differential measurements with high statistics will allow to disentangle SPS and DPS contributions

MCFM- Monte Carlo for Femtobarn processes: J. M. Campbell and R. K. Ellis, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10, arXiv:1007.3492.

Ratio of nuclear PDF (gluon) for Pb to bare proton PDF [arXiv:1401.2345]

Nuclear PDF (nPDF) poorly constrained at high and low x_A , where measurements at LHCb have a good sensitivity.

 x_{A} :momentum fraction of a parton inside the nucleon

Forward: proton beam in LHCb direction, backward: lead beam in LHCb direction

EPS09: JHEP 04 (2009) 065, DSSZ : Phys. Rev. D 85 (2012),HKN07: Phys. Rev. C 76 (2007) 065207 PANIC, Hamburg, August 28, 2014 Katharina Müller

Z production in proton-lead

Forward: pA collisions

Proton beam: ²⁰⁸₈₂Pb beam: cms energy: Luminosity:

 $E_n = 4 \text{ TeV}$ $E_{N} = Z E_{p} \approx 1.58 \text{ TeV}$ $\sqrt{s_{_{DN}}} \approx 5.02 \text{ TeV}$ Shift in rapidity: $\Delta y = -1/2 \ln Z/A \approx 0.47$ $1.099 \pm 0.021 \text{ nb}^{-1}$

arXiv:1406.2885, accepted by JHEP

11 candidates y_{Lab} Candidates / (2 GeV/ c^2) 2 Candidates / 0.20 LHCb LHCb 4 $p Pb \sqrt{s_{NN}} = 5 TeV$ $p Pb \sqrt{s_{NN}} = 5 TeV$ forward forward 0^E 60 0 80 100 120 2 3 5 $m_{\mu^+\mu^-}$ [GeV/ c^2] y

Z production in proton-lead

Backward: Ap collisions

Proton beam: 208 ₈₂ Pb beam: cms energy: Luminosity:

 $E_{p} = 4 \text{ TeV}$ $E_{_{N}} = Z E_{_{D}} \approx 1.58 \text{ TeV}$ $\sqrt{s_{pN}} \approx 5.02 \text{ TeV}$ Shift in rapidity: $\Delta y = -1/2 \ln Z/A \approx 0.47$ $0.521 \pm 0.011 \text{ nb}^{-1}$

arXiv:1406.2885, accepted by JHEP

4 candidates

Efficiencies, purity from data (purity >0.995) Cross sections:

forward:

 $\sigma_{Z(\rightarrow \mu + \mu -)} = 13.5^{+5.4}_{-4.0}$ (stat.) ± 1.2(syst.) nb backward:

 $\sigma_{Z(\rightarrow \mu + \mu -)} = 10.7^{+8.4}_{-5.1}$ (stat.) ± 1.0(syst.) nb

Theoretical predictions: NNLO calculations (FEWZ) nuclear modification: EPS09(NLO)

→ future higher statistics measurements will provide important information on nuclear PDFs

FEWZ: Y. Li and F. Petriello, Phys. Rev. D86 (2012) 094034, arXiv:1208.5967.

EPS09: K. Eskola, H. Paukkunen, and C. Salgado, JHEP 04 (2009) 065, arXiv:0902.4154.

PANIC, Hamburg, August 28, 2014

Katharina Müller

Fiducial volume muons: $p_T > 20$ GeV, $2 < \eta < 4.5$ mass: $60 < M(\mu\mu) < 120$ GeV²

W production in pp @ 7 TeV

W selection: one (isolated) muon

Muon: one muon $20 < p_T < 70 \text{ GeV/c}, 2.0 < \eta_\mu < 4.5$

```
Isolation E_{T}^{cone} < 2 \text{ GeV}
p_{T}^{cone} < 2 \text{ GeV/c}
```

Cuts against background:

- from semi-leptonic decays of heavy flavour lmpact parameter < 40 μm
- γ^*/Z : No other muon with p_{τ} >2GeV
- K/π punch through E(Calorimeter)/p<0.04

Main background:

kaon, pion decay in flight $\gamma^*/Z \rightarrow \mu\mu$, one muon in acceptance

arXiv 1408.4354

Purity from fit to p_T distribution simultaneously in 8 η bins and both charges

	Shape	Norm.
W →µv	simulation	fit
K/ π decay in flight	data	fit
γ*/Z→μμ	simulation	fixed
W→τv , Z→ττ	simulation	fixed
Heavy Flavour	data	fixed

Normalisation

- signal and decay in flight: fitted
- others : fixed from data

Purity: $(77.17 \pm 0.19)\%$ for W ⁺ $(77.40 \pm 0.23)\%$ for W ⁻

Comparison to NNLO predictions with six different PDF sets

PANIC, Hamburg, August 28, 2014

Katharina Müller

20

supplementary material, not on arXiv

Comparison to ATLAS: LHCb measurements corrected to account for the additional cuts: E_{Tmiss} >25 GeV, M_{T} >40 GeV

 \rightarrow good agreement in overlap region

Z production

Z plus jet: first LHCb measurement with jets Z plus D: first observation in pp collisions increased statistic: sensitivity to disentangle SPS and DPS contribution

Z in proton-lead collisions: first results, sensitivity to nuclear PDF

W production

Precise new measurements, valuable input for PDF fits

Tracks

Interaction

Poin

→ Many more interesting measurements to come!

Backup slides

PANIC, Hamburg, August 28, 2014

Katharina Müller

25

- 2010 36 pb⁻¹@ 7 TeV
- 2011 1 fb⁻¹ @ 7 TeV
- 2012 2 fb⁻¹ @ 8 TeV
- 2013 2 nb⁻¹ @ 5 TeV proton-lead

Since 2011: Luminosity levelling: Continuous adjusting of beam overlap → roughly constant luminosity → stable running conditions High data taking efficiency:>90%

Average Mu

2.5

1.5

0.5

0

1700

1800

1900

2000

2100

2200

LHC Fill Number

LHCb Average Mu at 3.5 TeV in 2011

٠

Source	$\Delta \sigma_{W^+ \to \mu^+ \nu}$ [%]	$\Delta \sigma_{W^- \to \mu^- \overline{\nu}} [\%]$	$\Delta R_W \ [\%]$
Template shape	0.28	0.39	0.59
Template normalisation	0.10	0.10	0.06
Reconstruction efficiency	1.21	1.20	0.12
Selection efficiency	0.33	0.32	0.18
Acceptance and FSR	0.18	0.12	0.21
Luminosity	1.71	1.71	

Inclusive Z measurements

 $Z \rightarrow \mu \mu$

φ -z view (Radius=z)

PANIC, Hamburg, August 28, 2014

Z→ee

Katharina Müller

 $Z \rightarrow \tau \tau \rightarrow e \mu$

- charmed hadrons from B-decays (dominant)
- real Z and D from different vertices
- combinatorial background: from 2d fit to mass distributions

2D mass distribution with PDF for signal and background

• purity is high about 95%

Inclusive Z measurements at 7 TeV

LHCb-CONF-2013-007

Fiducial volume

leptons: $p_T > 20$ GeV, $2 < \eta < 4.5$ mass: $60 < M_{\parallel} < 120$ GeV²

Background

muon < 0.3% electron ~ 4.5% tau 28-37

→ the following analyses are all based on the di-muon final state backgrounds:semileptonic decays of heavy quarks, misidentified hadrons

PANIC, Hamburg, August 28, 2014

Katharina Müller

JHEP 01 (2013) 111

