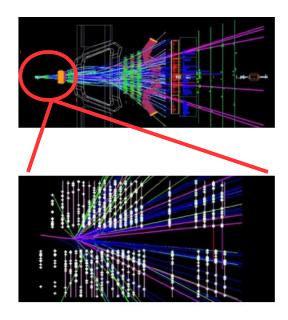
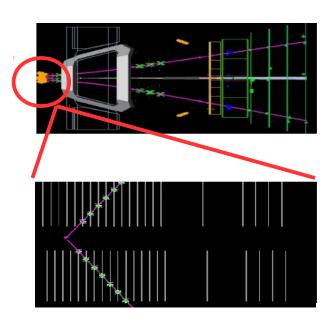
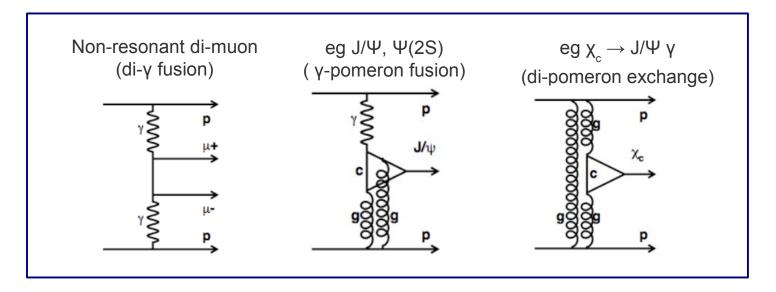


Central exclusive production at LHCb


Low-x meeting, Bari, June 13-17
Katharina Müller
on behalf of the LHCb collaboration
Physik Institut, University of Zurich



- Central Exclusive Production (CEP)
- LHCb detector
- Results of CEP @ 7, 8 and 13 TeV
- Outlook



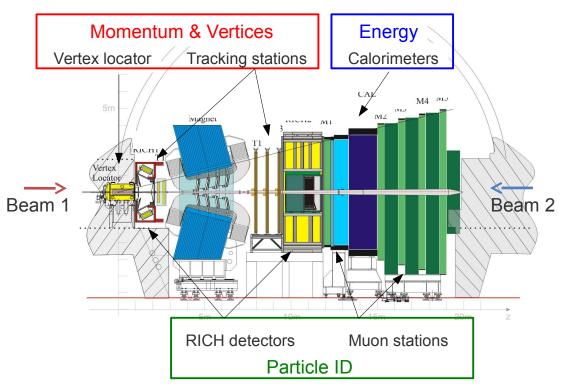
Central exclusive production (CEP): Introduction

exchange of a colourless object: eg. γ, pomeron

- → exclusive candidate (eg two muons) + rapidity gaps
- → protons escape undetected in beampipe

test of QCD and the pomeron in clean environment

search for the odderon and saturation effects resonant production \rightarrow sensitivity to gluon distribution at low Bjorken-x (5 ·10⁻⁶)


non-resonant production: pure QED process, precisely known

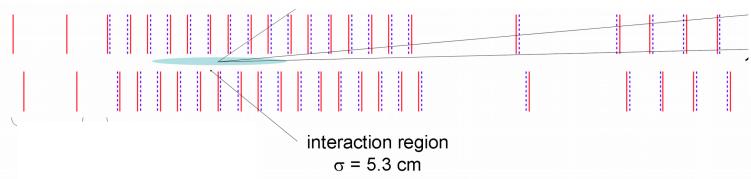
→ could be used for luminosity measurement

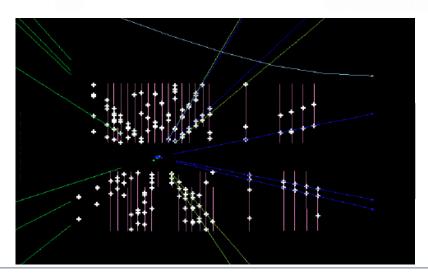
measured at HERA/Tevatron but different yp energy, W

single arm spectrometer – designed for precision measurements in b and c physics fully instrumented in the forward region (2 < η < 5) some detection capability in backward region (-3.5 < η < -1.5) very flexible trigger \rightarrow able to trigger on low momentum, low multiplicity objects run II: additional scintillators upstream and downstream (up to 114 m)

VELO: 20 µm impact parameter resolution

Muons: 97% efficiency for 2% misid


SPD: Scintillating pad detector in front of ECAL → event multiplicity

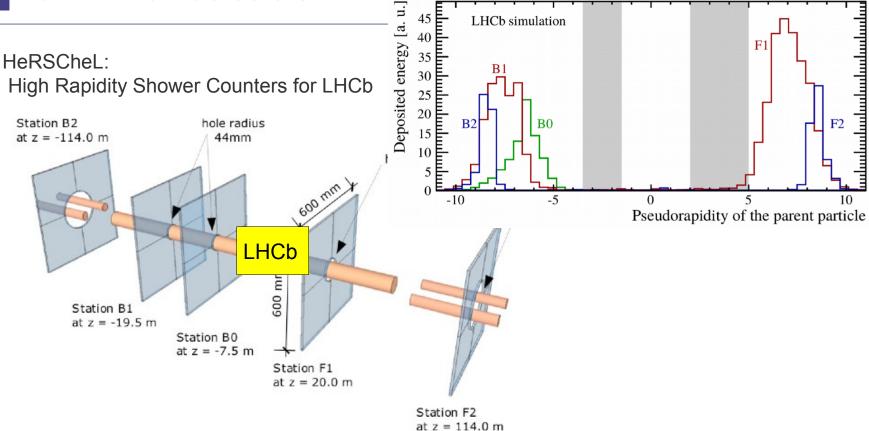


silicon strip vertex detector surrounding interaction region no magnetic field, R and ϕ sensors

pileup stations

forward: $1.5 < \eta < 5.0$ backward: $-3.5 < \eta < -1.5$

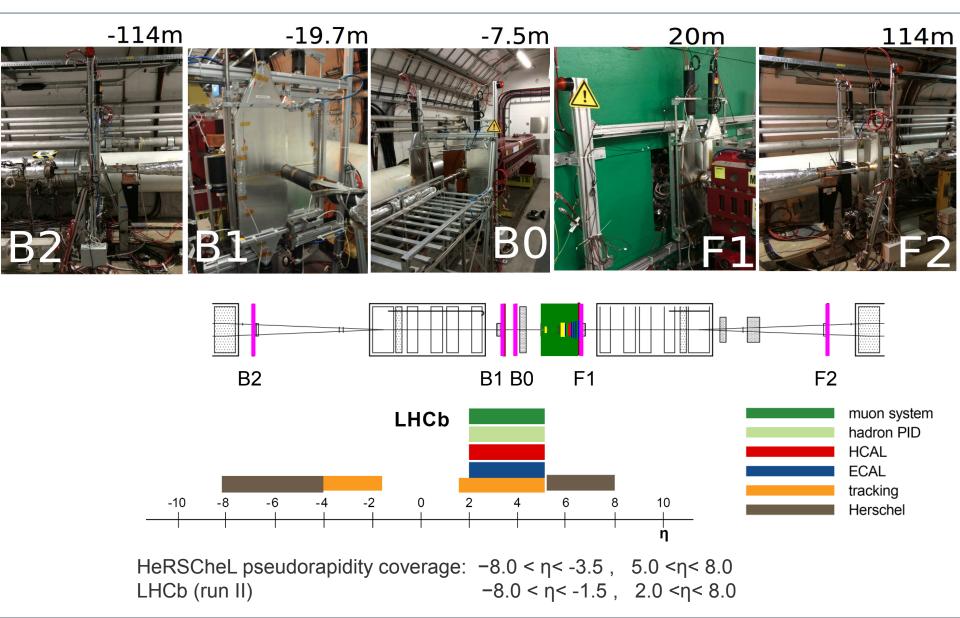
backwards tracks re-constructable (no momentum information)


rapidity gap coverage

forward: 3.5

backward: ~ 1-2 units, depending on z vertex

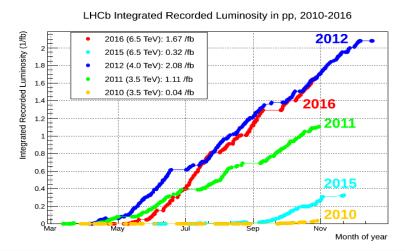
position

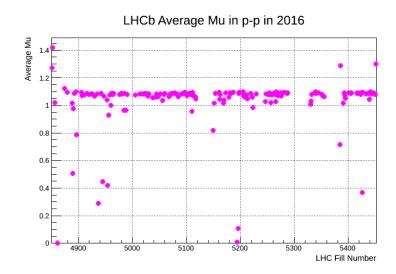

run II: additional scintillators upstream and downstream (up to 114 m)

 \rightarrow increase pseudorapidity coverage: $-8.0 < \eta < -1.5$, $5.0 < \eta < 8.0$

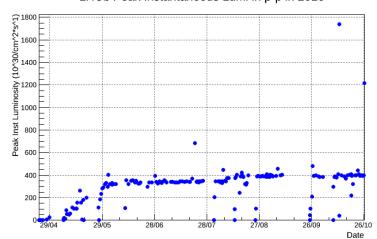
five stations: three backwards, two forward detectors four plastic scintillator plates, 20 mm thick - retractable

→ improvements in triggering and background rejection for CEP events


low pileup → following results based on events with one primary interaction (PV)


fraction of crossings with N interactions, f(N), with μ average number of interactions

$$f(N) = \frac{e^{-\mu}\mu^{N}}{N!}$$


			μ	f(1PV)
2011:	1.1 fb ⁻¹	7 TeV	1.6	25%
2012:	2.1 fb ⁻¹	8 TeV	1.4	29%
2015:	300 pb ⁻¹	13 TeV	1.1	35%
2016:	1.7 fb-1	13 TeV	1.1	35%

luminosity leveling – very stable data taking conditions

LHCb Peak Instantaneous Lumi in p-p in 2016

CEP with di-muon final states

J/ψ and ψ(2S) @ 7 TeV,

J.Phys. G41 (2014) 055002

J/ψ and ψ 2S @ 13 TeV,

LHCb-CONF-2016-007

double charmonia @ 7 TeV and 8 TeV, J.Phys. G41 (2014) no.11, 115002

di-muon continuum @ 7 TeV,

LHCb-CONF-2011-022

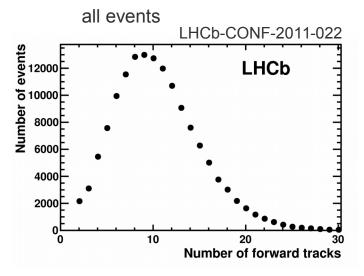
• $\chi_c (\rightarrow J/\psi \gamma)$ @ 7 TeV,

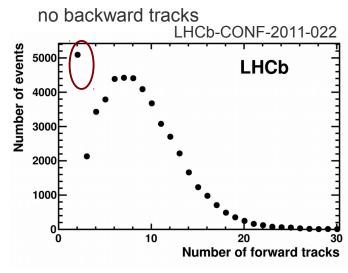
LHCb-CONF-2011-022

CEP with hadronic final states

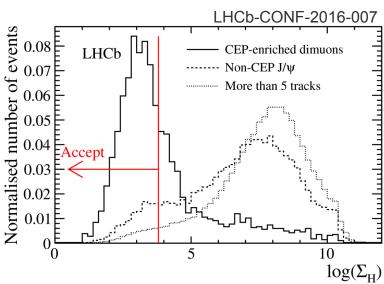
- double open-charm
- di-pion spectrum
- χ_c (→ ππ, KK)
- 'light' two- (and four-) hadron final states

CEP with photon final states


di-photon

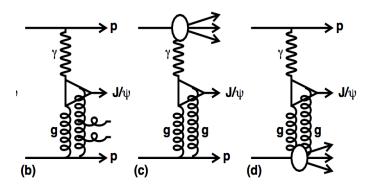

CEP in pA, Ap and AA collisions

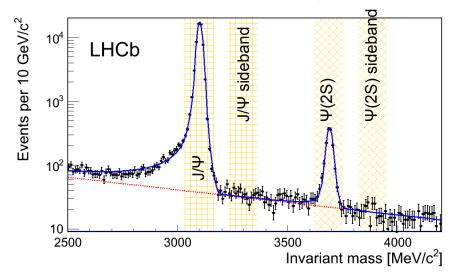
Measuring exclusivity @ LHCb

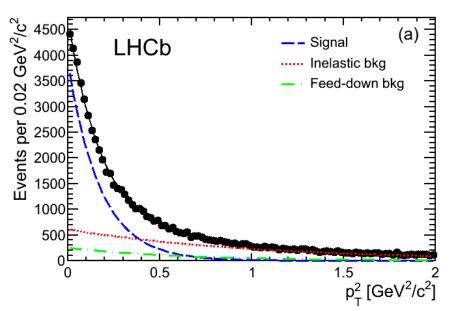

number of forward and backward tracks in VELO

- number of SPD hits
- cut on normalised ADC signal in each of the 20 scintillators of HeRSCheL

$$\Sigma_H = \sum_{i=1}^{20} \left(\frac{ADC_i}{2.5RMS_i} \right)^2$$


J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002


- 1/fb @ 7 TeV
- two muon, no other activity in event
- $\rm M_{\mu\mu}$ within 65 MeV of $\rm m_{\rm J/\psi}$, $\rm m_{\psi(2S)}$
- \rightarrow 55985 J/ ψ and 1565 ψ (2s) candidates


backgrounds

- non resonant: J/ψ 1%, ψ(2s) 17%
- feed down: J/ ψ : 10% from χ_c and ψ (2s) ψ (2s): 2% X(3872) and χ_c (2P)
- inelastic background with extra particles out of LHCb acceptance – dominant from proton dissociation and gluon radiation

estimated from p_T^2 distribution

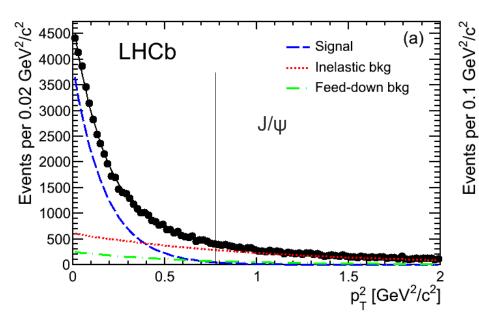
J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

1/fb @ 7 TeV

• two muon, no other activity in event

• $\rm M_{\mu\mu}$ within 65 MeV of $\rm m_{\rm J/\psi}$, $\rm m_{\rm \psi(2S)}$

• $p_T^2 < 0.8 \text{ GeV}^2$


backgrounds

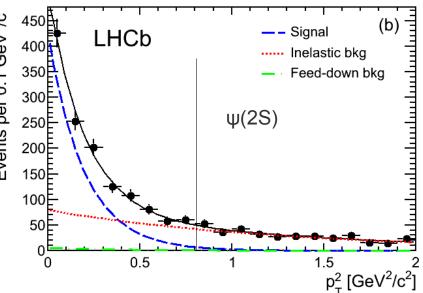
• non resonant: J/ψ 1%, ψ(2s) 17%

• feed down: J/ψ : 10% from χ_c and $\psi(2s)$

 $\psi(2s)$: 2% X(3872) and $\chi_c(2P)$

• inelastic background: about 40%

fit to determine inelastic contribution

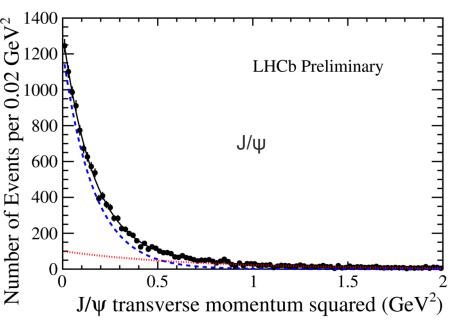

$$f_{s}e^{-b_{s}p_{T}^{2}}+f_{b}e^{-b_{b}p_{T}^{2}}f_{f}F_{f}p_{T}^{2}$$

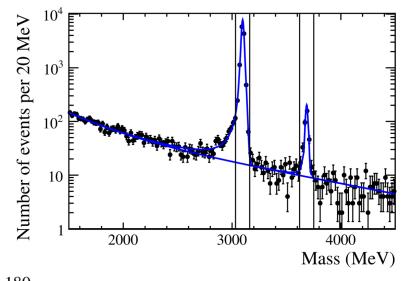
- signal and inelastic background: exponential
- feed-down shape from data

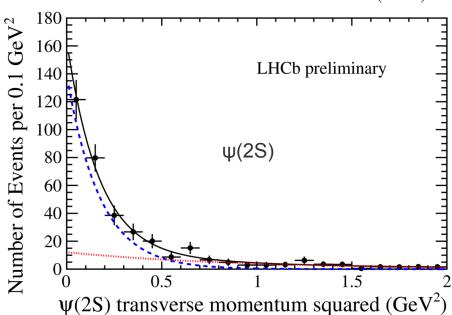
exp. slopes b agree well with expectation from HERA:

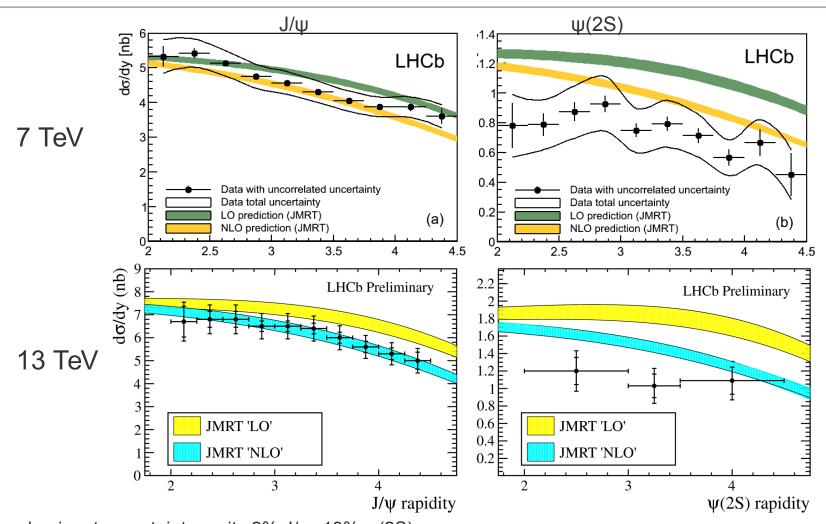
LHCb fit
$$b_s = 5.70 \pm 0.11 \text{ GeV}^{-2}$$

$$b_b = 0.97 \pm 0.04 \text{ GeV}^{-2}$$

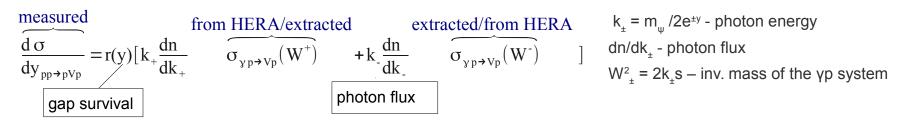



CEP of J/Ψ and Ψ(2S) @ 13 TeV

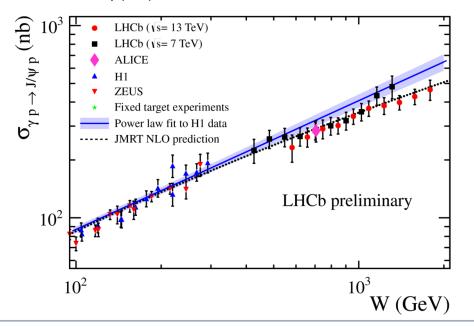

2015 dataset @ 13 TeV with L=204/pb 12992 J/ ψ candidates, 382 ψ (2S) candidates same selection plus HeRSCHeL veto

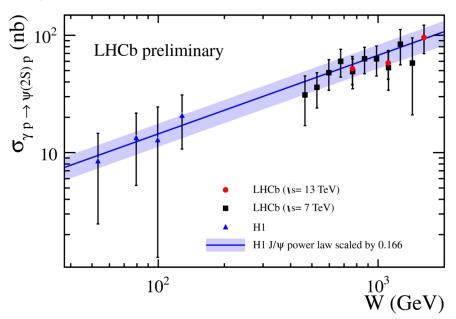

- non resonant: J/ψ 1%, ψ(2s) 18%
- feed-down: J/ψ 6% (10% @ 7 TeV)
- inelastic ~20%

→ inelastic background: run I ~40% → run II ~20%



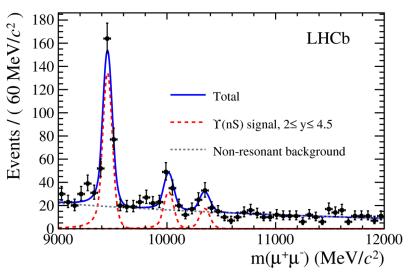
- dominant uncertainty:purity 2% J/ψ, 13% ψ(2S)
- uncertainties highly correlated between bins
- shape better described by NLO prediction or models including saturation

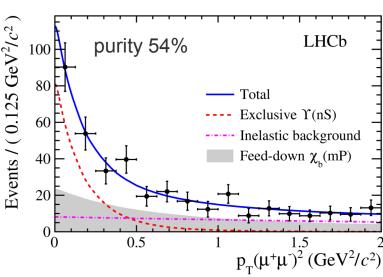

JRMT: JHEP 1311 (2013) 085



J/Ψ and Ψ(2S) photoproduction x-section

- → two correlated points (W +, W -) for each measurement in y, W:γp centre-of-mass energy
- 13 TeV data allows significant extension of the reach in W
- 7 & 13 TeV results are in agreement
- comparison with HERA \rightarrow simple power law insufficient to describe J/ ψ but data well described by NLO, $\psi(2S)$ results are consistent, but uncertainties large

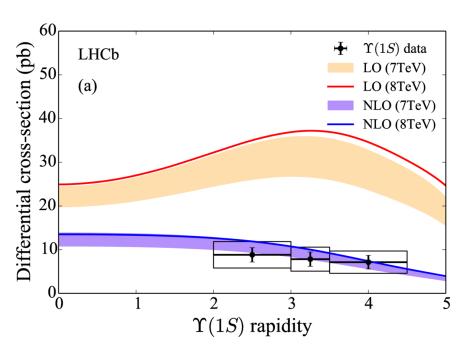


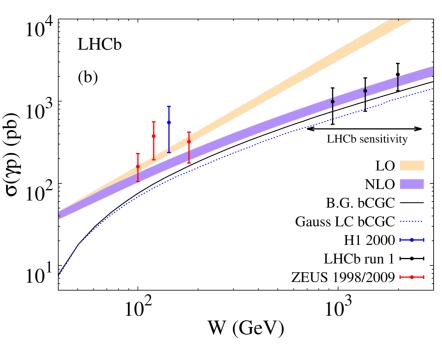

Run-I data set L=1/fb at 7 TeV and L=2/fb at 8 TeV analysis strategy similar to J/ψ , $p_T^2 < 2 \text{ GeV}^2$

background

- non-resonant: fit to di-muon mass
- feed-down, $\chi_b \rightarrow \Upsilon \gamma$: simulation and data input
- inelastic background: from fit to p_T² (non-resonant background sPlot subtracted)
- signal template is obtained from SuperChiC

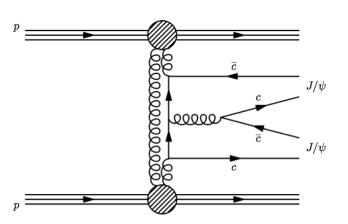
dominant uncertainty: background from feed down and inelastic events

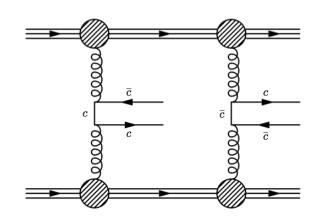




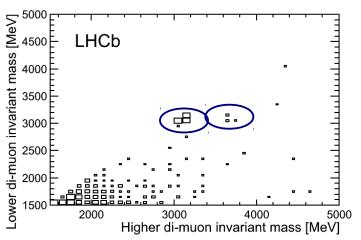
integrated cross-sections: $2.0 < \eta(\mu) < 4.5$ $\sigma(\Upsilon(1S) \rightarrow \mu^+ \mu^-) = 9.0 \pm 2.1 \text{ (stat)} \pm 1.7 \text{(sys)} \text{ pb}$ $\sigma(\Upsilon(2S) \rightarrow \mu^+ \mu^-) = 1.3 \pm 0.8 \text{ (stat)} \pm 0.3 \text{(sys)} \text{pb}$ upper limit: $\sigma(\Upsilon(3S) \rightarrow \mu^+ \mu^-) < 3.4 \text{pb} @ 95\% \text{ C.L.}$

W- solution very small - neglected

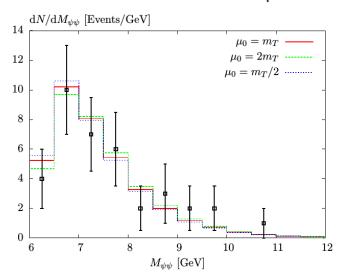

→ strong preference of NLO prediction colour glass condensate (CGC) formalism does describe data [Phys.Lett B742 (2015) 172]



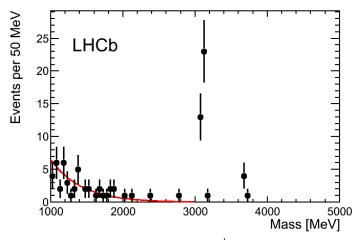
measurement of J/ ψ J/ ψ , J/ $\psi\psi$ (2S), ψ (2S) ψ (2S) and χ_c χ_c production exchange of two pomerons



- → cross section and mass spectrum sensitive to exotics, such as glueballs or tetraquarks
- comparison of exclusive and inclusive J/ψ mass spectra
 - \rightarrow helps to understand J/ ψ pairs production


analysis based on full run I data: 1 fb⁻¹ @ 7 TeV and 2 fb⁻¹ @ 8 TeV

- cross-sections for J/ψ J/ψ and J/ψ ψ(2S) pairs measured by LHCb
- upper limits established for $\psi(2S)~\psi(2S)$ and $\chi_{_{c(0,1,2)}}\chi_{_{c(0,1,2)}}$

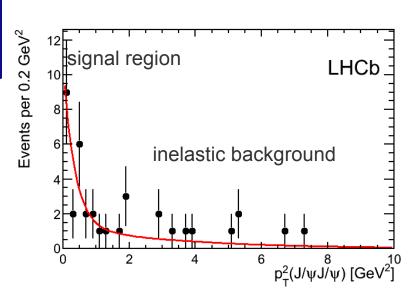

selection: four tracks - three identified as muons, no photons, no other tracks in VELO

invariant mass of di-muon pairs

four-muon invariant mass

invariant mass of 2nd di-muon pair

observed J/ ψ J/ ψ mass spectrum agrees with theory (arXiv:1409.4785)

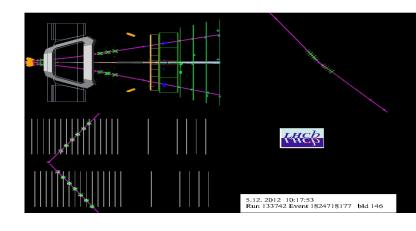

event yield in 3/fb : 37 J/ ψ J/ ψ , 5 J/ $\psi\psi$ (2S), 0 ψ (2S) ψ (2S), 1/0/0 $\chi_{_{\rm C}}\chi_{_{\rm C}}$ (0/1/2)

- → first observation of CEP of charmonium pair mesons
- → x-section for the decay into four muons in the LHCb acceptance non-resonant and feed-down background removed but still includes inelastic contributions

$$σ(J/ψ J/ψ) = 58 ± 10(stat) ± 6(sys) pb$$
 $σ(J/ψ ψ(2S)) = 63^{+27}_{-18}(stat) ± 10(sys) pb$
 $σ(ψ(2S)ψ(2S)) < 237 pb$
 $σ(χc0χc0) < 69 pb$
 $σ(χc1χc1) < 45 pb$
 $σ(χc2χc2) < 141 pb$

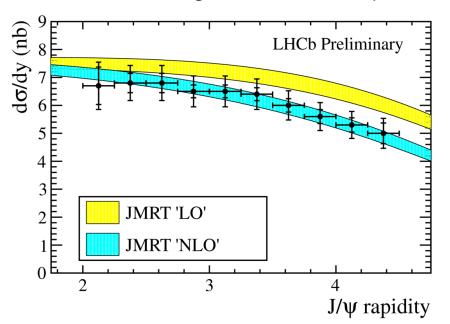
fraction of elastic events: 42 ± 13%

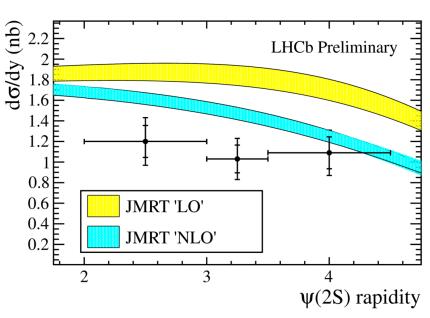
CEP: $\sigma(J/\Psi J/\Psi) = 24 \pm 9 \text{ pb}$ Theory: $\sigma(J/\Psi J/\Psi) \approx 8 \text{ to } 36 \text{ pb}$ [arXiv:1409.4785]

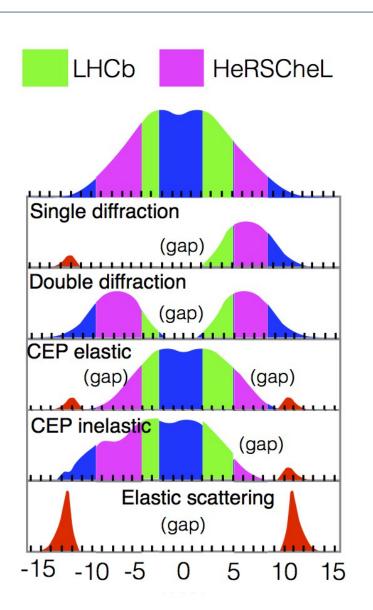


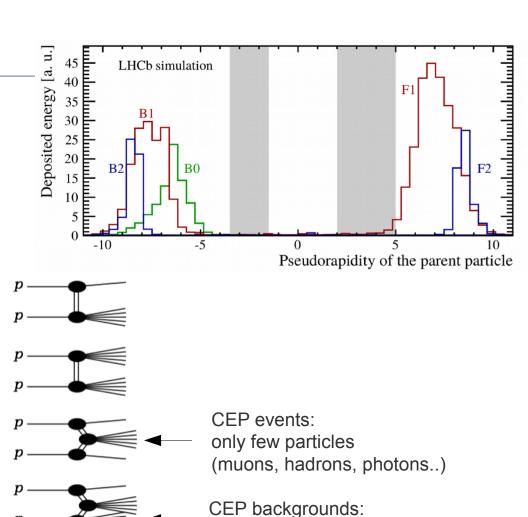
- LHCb's forward acceptance provides unique window on CEP
- Spectroscopy in a very clean environment
- QCD studies
 - very low-x gluon PDF
 - sensitivity to shadowing
 - nature of pomeron
 - sensitivity to glueballs, odderons, tetraquarks

- J/ψ, ψ(2S), Υ production
- double-charmonium
- Outlook
 - increased sensitivity
 - expect to collect 5/fb with low pileup → unique measurements possible also in proton-ion or heavy-ion collisions
- → many more interesting measurements also with hadronic final states to come!


Backup




integrated cross-sections 2.0 < $\eta(\mu)$ < 4.5 :

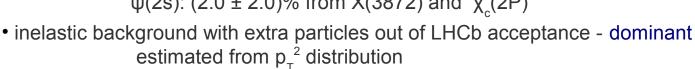

13 TeV
$$\sigma(J/\psi \to \mu^+ \mu^-) = 411.0 \pm 16 \ \text{stat} \pm 21 \ \text{sys} \pm 16 \ (\text{lumi}) \ \text{pb}$$

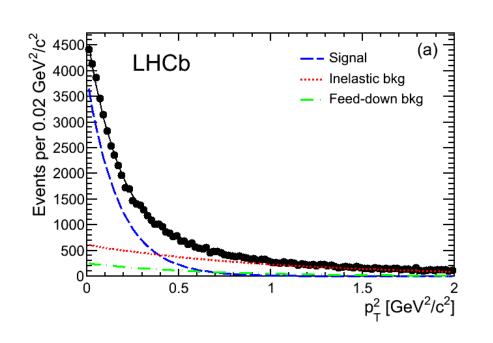
$$\sigma(\psi(2S) \to \mu^+ \mu^-) = 9.4 \quad \pm 1.3 \ \text{stat} \pm 0.5 \ \text{sys} \pm 0.4 \ (\text{lumi}) \ \text{pb}$$
 7 TeV
$$\sigma(J/\psi \to \mu^+ \mu^-) = 291.0 \ \pm 7 \ \text{stat} \ \pm 19 (\text{sys}) \text{pb}$$

$$\sigma(\psi(2S) \to \mu^+ \mu^-) = 9.4 \quad \pm 1.3 \ \text{stat} \pm 0.5 \ \text{sys} \pm 0.4 \ (\text{lumi}) \ \text{pb}$$

13 TeV → better agreement with NLO predictions

additional particles, usually very forward


Backgrounds


• non resonant: small for J/ψ (0.8±0.1)% significant for $\psi(2s)$ (17.0±0.3)%

from higher resonances feed down:

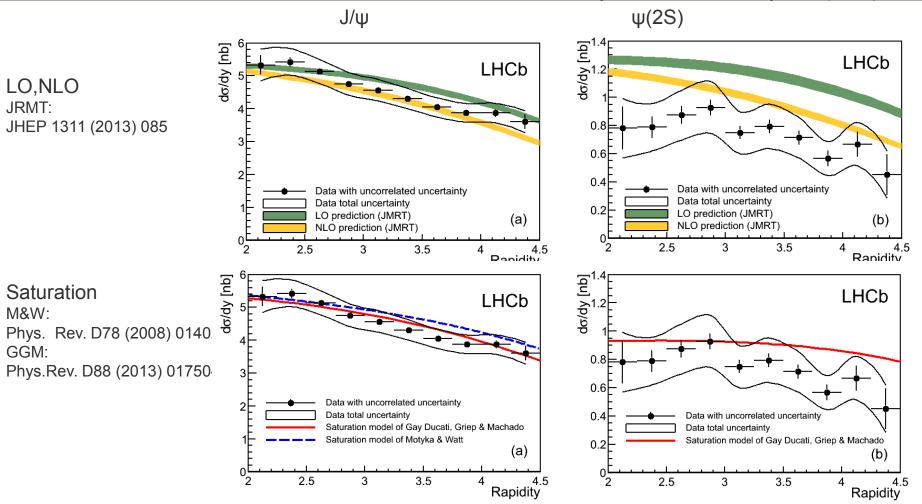
J/ψ: $(7.6 \pm 0.9)\%$ from χ_c and $(2.5 \pm 0.2)\%$ from $\psi(2s)$

 $\psi(2s)$: (2.0 ± 2.0)% from X(3872) and $\chi_c(2P)$

$$f_{s}e^{-b_{s}p_{T}^{2}}+f_{b}e^{-b_{b}p_{T}^{2}}f_{f}F_{f}p_{T}^{2}$$

- signal and inelastic background: exponential
- feed-down: shape from data
- fit slope and normalization of signal and backgrounds

exp. slopes b agree well with expectation from HERA:


LHCb exp. from HERA

$$b_s \sim 6 \text{ GeV}^{-2}$$

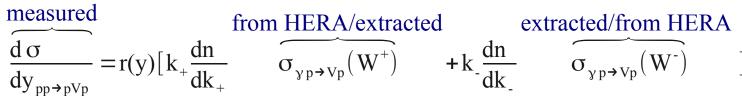
 $b_h \sim 1 \text{ GeV}^{-2}$

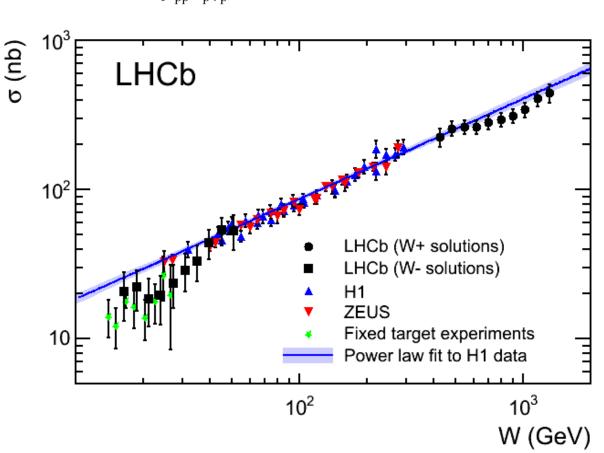
LHCb fit

$$b_s = 5.70 \pm 0.11 \text{ GeV}^{-2}$$

 $b_b = 0.97 \pm 0.04 \text{ GeV}^{-2}$

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002


- dominant uncertainty:purity 2% J/ψ, 13% ψ(2S)
- uncertainties highly correlated between bins
- shape better described by NLO prediction or models including saturation



J/Ψ, Ψ(2S) photoproduction x-section

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

compare to HERA γp data using known photon flux for a photon (energy k)

- → two correlated points for each measurement (W ⁺, W ⁻) in y
- → good agreement with low energy fixed target data

deviation from power law:

- higher order
- saturation effects

feed down backgrounds

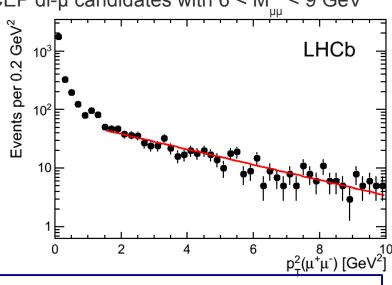
Signal window	Υ sample	Estimated contamination yield		
		$\chi_b(1P)$	$\chi_b(2P)$	$\chi_b(3P)$
$2 < y(\Upsilon) < 4.5$	$\Upsilon(1S)$	63 ± 10	14 ± 5	3 ± 2
	$\Upsilon(2S)$	_	43 ± 12	5 ± 3
	$\Upsilon(3S)$	_	_	21 ± 21
$2 < y(\Upsilon) < 3$	$\Upsilon(1S)$	31 ± 8	2 ± 2	0 ± 2
$3 < y(\Upsilon) < 3.5$	$\Upsilon(1S)$	22 ± 6	10 ± 4	0 ± 2
$3.5 < y(\Upsilon) < 4.5$	$\Upsilon(1S)$	8 ± 4	0 ± 2	3 ± 2

systematic uncertainties

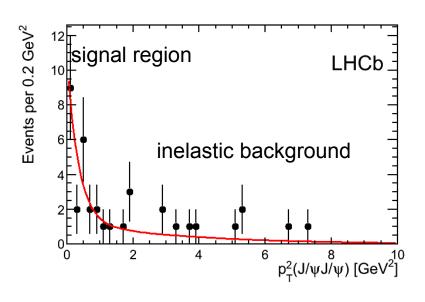
	2 < y < 3	3 < y < 3.5	3.5 < y < 4.5	2 < y < 4.5		
	$\Upsilon(1S)$	$\Upsilon(1S)$	$\Upsilon(1S)$	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
Purity fit	14.2	14.2	14.2	13.7	13.7	13.7
Feed-down b.g.	12.2	12.2	12.3	12.2	14.6	12.5
Υ' feed-down	4.0	4.3	5.4	4.5	11.1	_
Mass fit	2.2	2.8	2.9	2.1	2.8	3.6
Luminosity	2.3	2.3	2.3	2.3	2.3	2.3
$\mathcal{B}(\Upsilon \to \mu^+ \mu^-)$	2.0	2.0	2.0	2.0	8.8	9.6
Total	19.5	19.7	20.0	19.3	24.8	21.4

fraction of elastic events:

$$d \sigma / d p_T^2 = f_s b_s e^{-b_s p_T^2} + (1 - f_s) b_b e^{-b_b p_T^2}$$

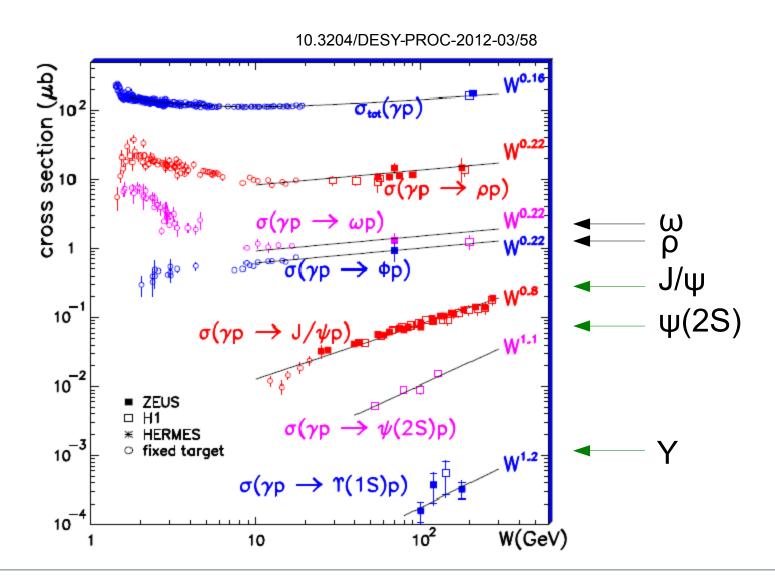

elastic (b_s) & inelastic (b_h) components

- take b_b from fit to background sample: $b_b = 0.29 \pm 0.02 \text{ GeV}^{-2}$ perform fit to determine b_s and f_s $b_s = 2.9 \pm 1.3 \text{ GeV}^{-2}$, $f_s = 0.42 \pm 0.13$

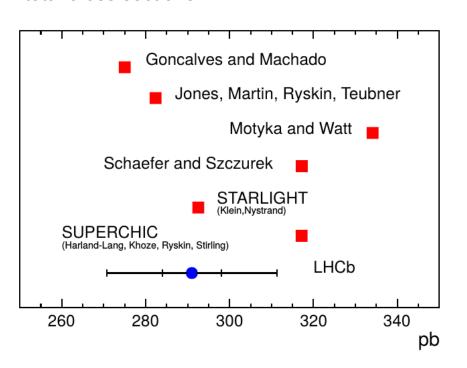

$$b_s = 2.9 \pm 1.3 \text{ GeV}^{-2}, |f_s = 0.42 \pm 0.13$$

background sample:

CEP di- μ candidates with 6 < M $_{\mu\mu}$ < 9 GeV


CEP: $\sigma(J/\Psi J/\Psi) = 24 \pm 9 \text{ pb}$ Theory: σ(J/ΨJ/Ψ) ≈ 8 to 36 pb

arXiv:1409.4785



work ongoing with other final states, also in hadronic channels

total cross sections:

cross section times BF to two muons with $2.0 < \eta < 4.5$

$$\sigma(J/\psi) = 291 \pm 7(stat) \pm 19(syst) \text{ pb}$$

 $\sigma(\psi(2S)) = 6.5 \pm 0.9(stat) \pm 0.4(syst) \text{ pb}$

→ in good agreement with predictions

G&M: Phys. Rev. C84 (2011) 011902 JRMT: JHEP 1311 (2013) 085

M&W: Phys. Rev. D78 (2008) 014023 Sch&S Phys. Rev. D76 (2007) 094014 Starlight: Phys. Rev. Lett. 92 (2004) 142003 Superchic: Eur. Phys. J. C65 (2010) 433

LHCP J/Ψ, Ψ(2S) photoproduction x-section

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

J/Ψ production cross section measured as a function of rapidity

- → results can then be compared to H1/ZEUS data using photon flux for a photon of energy k
 - correct for gap survival
 - each rapidity bin: two solutions for W
 - take LO extrapolation from HERA for W +(-), extract solution for W -(+)

$$\underbrace{\frac{d \sigma}{d y_{pp \to pVp}}}_{= r(y)[k_{+} \frac{dn}{dk_{+}}} \underbrace{extracted/from HERA}_{= \sigma_{\gamma p \to Vp}(W^{+})} + k_{-} \frac{dn}{dk_{-}} \underbrace{\sigma_{\gamma p \to Vp}(W^{-})}_{= \sigma_{\gamma p \to Vp}(W^{-})}]$$

$$r(y) = 0.85 - \frac{0.1|y|}{3}$$
 absorptive correction, gap survival

$$\frac{dn}{dk} = \frac{\alpha_{cm}}{2\pi k} \left[1 + \left(1 - \frac{2k}{\sqrt{s}}\right)^{2} \right] \left(\log A - \frac{11}{6} + \frac{3}{A} - \frac{3}{2A^{2}} + \frac{1}{3A^{3}} \right)$$
 photon energy spectrum