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A measurement of the Zγ production in proton-proton collisions at a centre-of-mass energy of
8 TeV is performed. The data is collected with the LHCb detector at the Large Hadron Collider
(LHC), corresponding to an integrated luminosity of 2.06 ± 0.07 fb−1. The Z candidates are
reconstructed in the µ+µ− decay channel. The muons must have transverse momenta, pT ,
larger than 20 GeV/c and a pseudo-rapidity, η, between 2 and 4.5. The photon is selected via a
multivariate analysis based on shower shape variables of the electromagnetic calorimeter and is
required to have a pT larger than 2 GeV/c and a pseudo-rapidity between 1.8 and 4.3. Between
the muons and the photon there must be an isolation of ∆R ≥ 0.1.
The analysis is based on template fits with input templates from Monte Carlo simulations.
Corrections for the efficiencies are included and the total production cross section is measured
to be σpp→Zγ+X = 3652± 351(stat)± 413(sys) fb. A comparison with theoretical predictions of
the Standard Model shows a 1.3σ difference.
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Introduction

This thesis reports the measurement of the Zγ cross section in pp collisions at the LHCb experi-
ment at CERN. It is organized in the following manner: in the first chapter, a brief review of the
Standard Model of particle physics is presented and the Zγ production in the forward direction
as well as its theoretical predictions are discussed. In the following chapter, an illustration of
the LHCb detector is given.
The main part covered in Chapter 3 is the description of the measurement of the cross section,
its results and a comparison to the theoretical prediction It includes corrections for the recon-
struction, selection, trigger and global event cut efficiency and the template fit that leads to the
measured signal yield.
The conclusion at the end is a short summary of the results and a small outlook.
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1 Theory

1.1 Standard Model

The Standard Model of particle physics (SM) describes the elementary particles and their inter-
actions. The particles predicted by the SM contain three generations of fermions (half-integral
spin) and the gauge bosons (integral spin).

1.1.1 Forces and Bosons

In nature four different interactions between particles are observable:

• gravitation,

• the electromagnetic interaction,

• the weak interaction and

• the strong interaction.

The SM does not include gravitation, as there is no known theory that describes gravitation
consistent in the framework of the SM. But the gravitational force is very weak and is negligible
on the small scales and masses studied in particle physics.
The carriers of the three remaining forces are the photon, W± and Z bosons as well as the
gluons (Table 1.1).

Since process p + p → Zγ + X is analysed, the interesting particles are the Z boson and the
photon.
While the photon is massless and stable, the Z is a massive vector boson and has a very short
life time of τ = 1/Γ ≈ 2.6× 10−25 s [8]. It decays primarily in hadrons and neutrinos. A list of
the most important decay modes and branching fractions is given in Table 1.2.

Interaction Electromagnetic Weak force Strong force

Gauge bosons photon (γ) W± Z gluons (g; 8 pieces)
charge Q 0 ±1 0 0
mass m 0 eV/c2 80.4 GeV/c2 91.2 GeV/c2 0 eV/c2

acting on all charged particles
all left-handed

fermions and W±, Z
quarks and gluons

Table 1.1: Gauge bosons of the SM [8].
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1 Theory

Mode (Z →) Fraction (Γi/Γ)

e+e− ( 3.363±0.004)%
µ+µ− ( 3.366±0.007)%
τ+τ− ( 3.370±0.008)%

hadrons (69.91 ±0.06 )%
νiνi (20.00 ±0.06 )%

Table 1.2: Decay modes of the Z boson with a branching fraction above 1% [8].

1st generation 2nd generation 3rd generation

Quarks

up (u) charm (c) top (t)
Q +2/3 +2/3 +2/3
m 2.3 MeV/c2 1.275 GeV/c2 173.1 GeV/c2

down (d) strange (s) bottom or beauty (b)
Q −1/3 −1/3 −1/3
m 4.8 MeV/c2 95 MeV/c2 4.18 GeV/c2

Leptons

electron (e−) muon (µ−) tau (τ−)
Q −1 −1 −1
m 511 keV/c2 106 MeV/c2 1.78 GeV/c2

electron-neutrino (νe) muon-neutrino (νµ) tau-neutrino (ντ )
Q 0 0 0
m < 2 eV/c2 @ 95% C.L. < 0.19 MeV/c2 @ 90% C.L. < 18.2 MeV/c2 @ 95% C.L.

Table 1.3: Fermions of the SM with charge Q and mass m [8].

1.1.2 Matter and Fermions

Matter and composite particles are built from the 12 fermions which are described by the SM. To
each fermion exists an antiparticle having the same qualities, but opposite charge-like quantum
numbers. Table 1.3 lists all known fermions f (the antifermions f are not listed).

1.1.3 Higgs Boson

The final elementary particle in the SM is the Higgs boson. The interaction between the Higgs
boson and the elementary particles gives them mass.
The Higgs boson has a mass of (125.9± 0.4) GeV/c2 [8] and has been discovered by ATLAS and
CMS at CERN in 2012 [1], [12].
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1.2 Zγ Production
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Figure 1.1: Feynman diagram of q + q → Z(→ `+ + `−) + γ.
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Figure 1.2: Example of a Feynman diagram contributing to g + g → Z(→ `+ + `−) + γ [11].

1.2 Zγ Production

1.2.1 Production Mechanisms

In proton-proton collisions, the main production channel of Zγ is the annihilation of a quark
with an antiquark of the same flavour [11].

q + q → Zγ (1.1)

The leading order Feynman diagram is shown in Fig. 1.1. A higher order contribution arises for
example from gluon production (a possible Feynman diagram is shown in Fig. 1.2) [11]:

g + g → Zγ (1.2)

Another process which leads to a `+ +`−+γ final state is Z production with final state radiation
or Bremsstrahlung from a lepton of the Z decay:
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Created by FeynDiag v0.1�Z

q

q̄

`−

γ

`+

Figure 1.3: Feynman diagram of Z production with Bremsstrahlung radiated from the positive
lepton of the Z decay.

q + q → Z → `±(→ `± + γ) + `∓ (1.3)

The Feynman diagram for this process is depicted in Fig. 1.3

1.2.2 Theoretical Prediction

A theoretical prediction for Zγ production at hadron colliders is computed in various papers
(e.g. Ref. [16] which contains up to NNLO calculation), but the cross section for the phase space
of LHCb has not been calculated so far. In Ref. [16] Grazzini et al. calculate that the difference
between LO and NNLO is about a factor of 2 for the phase space of the ATLAS experiment
(this calculation does not distinguish between photons emitted in the hard scatter or from the
final state leptons). Grazzini et al. agreed to use the algorithm to calculate the cross section
the LHCb phase space and the following cuts:

• pT,µ± ≥ 20 GeV/c

• ηµ± ∈ [2.0, 4.5]

• mµµ ∈ [60 Gev/c2, 120 Gev/c2]

• ηγ ∈ [1.8, 4.3]

• pT,γ ≥ 2 Gev/c

• ∆R(µ) ≥ 0.4 which is an isolation between the photon and the muon (cf. Section 3.1.1).

The result for leading order (LO) is:

σpp→Zγ+X = 2611.2± 1.4 fb (1.4)

and for next to leading order (NLO):

σpp→Zγ+X = 2806.7± 1.7 fb (1.5)
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1.2 Zγ Production

The effects originating from higher order correction are much smaller in the LHCb phase space
than in the one of ATLAS.
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2 LHCb Detector

The LHCb experiment is a dedicated b- and c-physics experiment at the Large Hadron Collider
(LHC). The total bb cross section at

√
s = 7 TeV has been measured to be ∼ 75 µb inside the

acceptance of LHCb and ∼ 300 µb extrapolated to 4π solid angle [2]. Figure 2.1 shows the
simulated polar angle distribution of the produced b and b quark. Due to the small angles of
the b quarks with respect to the proton beams, the detector is designed as a single arm forward
spectrometer and covers polar angles from ∼ 15 mrad − 250 mrad (2.0 < η < 5.0). A side view
of the detector is shown in Fig. 2.2. The key features of the LHCb detector are:

• an excellent vertex and proper time resolution;

• a precise particle identification;

• a good momentum resolution and good opening angle determination, which implies precise
invariant mass resolution;

• an efficient and flexible trigger system for leptonic and hadronic final states.

0
/4π

/2π
/4π3

π

0

/4π

/2π

/4π3

π  [rad]1θ

 [rad]2θ

1θ

2θ

b

b

z

LHCb MC
 = 8 TeVs

Figure 2.1: Pythia [25] simulation of the bb cross section in pp collisions at
√
s = 8 TeV as a

function of the polar angle of the produced b and b. The bright red part corresponds
to phase space with both quarks in the LHCb acceptance, the dark red to the one
with only one quark.
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2 LHCb Detector
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2.1 VELO and Tracking System

2.1 VELO and Tracking System

The tracking system consists of a dipole magnet, four tracking stations and the vertex locator
(VELO). The VELO is a silicon microstrip detector that is located at a very small distance
(down to 8 mm) to the beam axis, providing an excellent vertex resolution. For a typical event,
producing 25 tracks, the vertex resolution is 15 µm in the transverse plane and 75 µm along the
beam axis.
The first tracking station (TT) is a micro-strip silicon detector. It is located upstream from the
dipole magnet. The other tracking stations (T1-T3) are constructed of straw tubes in the outer
region, and silicon strips close to the beam pipe. They are located downstream from the magnet.
The achieved relative momentum resolution is σp/p = 0.4% for p = 1 GeV/c and σp/p = 0.6%
for p = 100 GeV/c [18], [6], [7].

2.2 Particle Identification

The two Ring Imaging Cherenkov Detectors (RICH), one upstream from the magnet, one down-
stream, allow to distinguish between kaons and pions up to a momentum of 100 GeV/c.
The calorimeter system consists of a scintillator pad detector (SPD), pre-shower detector (PS),
a lead-scintillator Electromagnetic Calorimeter (ECAL) of shashlik type and an iron-scintillator
Hadron Calorimeter (HCAL). Electrons and photons are identified in the SPD/PS and ECAL.
The SPD/PS plays an important role in the separation of single photons and merged pions. Due
to their finer granularity compared with the ECAL, their information is essential in multivariate
classifiers like the BDT described in Section 3.6.2 or newIsPhoton described in Section 3.6.3.
The muon system consists of five stations. They are equipped with Multiwire Proportional
Chambers, interlaced with iron absorbers, with the exception of the central part of the first
station, which uses triple-GEM (Gaseous Electron Multiplier) detectors.
The calorimeters and the muon system are responsible for the trigger decisions at Level 0 (cf.
Section 2.3) [18], [6], [7].

2.2.1 Electromagnetic Calorimeter

For the identification of photons, the calorimeter system (especially SPD/PS and ECAL) plays
an important role as photons do not leave tracks in the tracking system or signals in the RICH
detectors. Because LHCb is a dedicated c and b physics experiment, the ECAL is not designed for
high transverse energies and momenta. The ECAL readout electronics of a single calorimeter
cell saturate at pT,γ = 10 GeV/c. For higher momenta, the energy cannot be reconstructed
accurately. Figure 2.3 shows the measured versus the true transverse momentum of simulated
photons (the simulation hard photon signal MC is used, see Section 3.2 for further information).
At the threshold of 10 GeV/c measured pT,γ the ECAL is saturated. The second step for photons
saturating two ECAL cells at pT,γ = 20 GeV/c is visible, too.

19
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Figure 2.3: (a) Reconstructed versus the true transverse momentum of hard photon signal MC
and (b) the distributions of true and reconstructed pT,γ . The saturation of the
ECAL at pT,γ = 10 GeV/c and pT,γ = 20 GeV/c for one and two calorimeter cells,
respectively, is clearly visible.

2.3 Trigger

The design luminosity of the LHCb is 2× 1032 cm−2s−1. At this luminosity, the rate of events
with at least two particles in the LHCb acceptance is ∼ 10 MHz. The LHCb trigger reduces this
rate by a factor 2000 to 5 kHz, which is the rate the events can be written to storage. Hence the
trigger has to be highly selective and efficient. It consists of two levels: Level 0 (L0) and High
Level Trigger (HLT). L0 is a hardware trigger, implemented on electronic boards. Its decision
is based on calorimeter and muon chamber information and it selects muons, electrons, photons
or hadrons above a given pT or transverse energy ET . It reduces the rate to about 1 MHz.
The HLT is a software algorithm, which is separated in two stages: HLT1 uses a partial recon-
struction of the event and selects good-quality tracks. The reduction factor is about 30. HLT2
uses the fully reconstructed tracks to reduce the rate finally to 5 kHz [18], [6], [7].
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3 Analysis

3.1 Introduction

The analysis of the data taken at the LHCb experiment was performed with the ROOT frame-
work [10]. It is divided into the following steps:

1. Classification of the simulated events and searching for variables that discriminate between
signal and background.

2. Selection of the photon and Z boson.

3. Calculation of the different efficiencies.

4. Fixing the fraction of final state radiation and Bremsstrahlung with a fit.

5. Estimation of the performance of the data fit with a toy model.

6. Fit to data with fixed radiative part and correction with the response matrix from the toy
model.

7. Calculation of the production cross section.

3.1.1 Variables

Different kinematical and topological variables are used in this analysis. Their definition is given
in the following list:

• pT [MeV/c]: The transverse momentum of a particle in MeV/c.

• η = − ln(tan ϑ
2 ): The pseudo-rapidity where ϑ is the polar angle between the beam axis

and the measured momentum vector of the particle.

• φ: The azimuthal angle of the measured momentum vector of a particle.

• ∆R =
√

(φ1–φ2)2 + (η1 − η2)2: The distance in “solid angle” between two tracks from the
same primary vertex.

• ∆R(all tracks): ∆R of the photon and the closest track from the same primary vertex.

• ∆R(µ): ∆R of the photon and the closest muon track of the Z decay from the same
primary vertex.

• mµµ[MeV/c2]: The invariant mass of the two muons of the Z decay.

• mµµγ [MeV/c2]: The invariant mass of the two muons of the Z decay and the photon.
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3 Analysis

3.2 Simulated Samples

Two different Monte Carlo (MC) simulations are used for the analysis. The first is a pp→ Z+jet
simulation, which describes the main part of the expected background (background MC ). It
contains 2 × 4 500 000 events. The reason for the factor 2 is that the events are simulated for
the two magnet polarities separately.
The second MC sample is a pp → Zγ + X simulation representing the signal with 2 × 525 000
events (hard photon signal MC ).
The simulation of the final state radiation and Bremsstrahlung is obtained from events of the
hard photon signal MC if a photon originating from a muon was found. If there are multiple
photons in a single event, a candidate is created for each photon; e.g. an event with a photon
from the hard scattering process and Bremsstrahlung photon from one muon results in a hard
signal candidate, with the hard scattering photon and in a radiative signal candidate with the
Bremsstrahlung photon.
The Monte Carlo samples are generated with Pythia6 [25] as event generator and the decays
are simulated with EvtGen [19]. PHOTOS [15] is used to describe the final state radiation
simulation. With GEANT4 [5] the LHCb detector is being simulated.

3.2.1 Classification

In the simulations four different classes for the photon candidates are defined:

• hard signal (usually displayed in black): The photon has to be truth matched (it is a real
γ), the Z and the photon come from the same vertex and origin from the hard process
(primary vertex).

• radiative signal (usually displayed in green): Final state radiation (FSR) and Bremsstrahlung,
which are truth matched photons with a muon of the Z decay as mother particle.

• background photons (usually displayed in red): This sample contains the remaining truth
matched photons which are no hard signal or radiative signal. Usually originating from
neutral meson decays or Bremsstrahlung from other particles than the muons from the Z
decay.

• charged background (usually displayed in blue): All candidates containing a detected mis-
identified photon (photon candidate truth matched to a non-photon particle).

The first two classes are basically the signal, the other two are background. Figure 3.1 shows
the distributions of important variables for the different classes only applying the Z selection.
The pT,γ distribution shows that the signal classes have higher momenta than the background.
The variable ∆R(µ) has a good separation power for the radiative signal to all other classes
(which have similar distributions in this variable). That is because the photons of the radiative
signal origin from the muons of the Z decay and therefore should be close to the muon track.
Also the invariant mass of the two muons (mµµ) has some separation power, as for the radiative
signal a part of the energy of the two muons is radiated with the photon and therefore mµµ tends
to be smaller than the actual Z mass whereas the classes hard signal and background photons
reproduce the Z resonance. Similar considerations apply for mµµγ : The radiative signal peaks
at the Z mass, the hard signal has higher invariant masses than the other classes due to the
high-energetic photons and the background is in the middle.
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3.3 Data Sample

∆R(all tracks) separates between background photons and the other classes. The background
photons are usually part of a jet and therefore have other particles nearby which is the reason
for the small values of ∆R(all tracks).

3.3 Data Sample

A data sample recorded by LHCb in the data taking period 2012 with an integrated luminosity
of 2.06± 0.07 fb−1 at a centre-of-mass energy of

√
s = 8 TeV is used for the analysis.

The following trigger lines were used:

Level Trigger Meaning

L0 L0Muon
SPD-hits ≤ 600
pT,µ ≥ 1.5 GeV/c

Hlt1 Hlt1SingleMuonHighPT
pT,µ ≥ 4.8 GeV/c
IsMuon 1

Hlt2 Hlt2SingleMuonHighPT pT,µ ≥ 10.0 GeV/c

Table 3.1: Triggers used for the data acquisition and for the calculation of the trigger efficiency.

It is required that at least one of the muons has fired all three levels (i.e. is TOS for all three
levels, Trigger On Signal).
In the same way as in the simulations, if there are multiple photons in a single event, a candidate
is created for each photon. This procedure could increase the cross section if there are a lot of
events with multiple photons. Studies on simulation have shown, that less than 1% of the events
passing the selection criteria have multiple photons. Therefore this effect is neglected.

3.4 Comparison of Data and Simulation

To assure that the simulation describes the data correctly, different distributions of variables
between the simulations and data are compared. Because the simulations describe only a part
of the data, cuts are applied in order to reduce the data to one specific class. Using the cut
∆R(µ) ≤ 0.2 it is possible to isolate the radiative signal events (cf. Fig. 3.1(d)). The comparison
of data with the applied cut ∆R(µ) ≤ 0.2 and the class radiative signal is shown in Fig. 3.2.
Data and simulation are in good agreement for the important variables of the fit like mµµγ

(Fig. 3.2(f)) and mµµ (Fig. 3.2(e)) as well as ∆R(all tracks) (Fig. 3.2(c)). Small differences
in the crucial variables for the photon selection like the BDT output and newIsPhoton may
origin from the pollution of the data with hard signal and background photons and the input
variables of the BDT are very sensitive to small uncertainties in simulation. As the efficiency for
newIsPhoton is estimated from data in Section 3.8.1, these differences do not affect the result.

The data can be reduced to contain mainly background photons when selecting low energetic
photons only. The cut 1 GeV/c ≤ pT,γ ≤ 1.5 GeV/c is applied to the data and the distributions

1A particle is called “IsMuon”, if there is a certain number of muon station hits in a Field of Interest defined by
the track extrapolation. The number of required hits is momentum dependent.
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Figure 3.1: Normalized distributions of important variables for the different classes of the sim-
ulations only applying the Z selection.
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Figure 3.2: Comparison between data and simulation for the enhanced radiative signal.
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of important variables are compared to the background photons from simulation (cf. Fig. 3.3) .
The relevant variables for the fit are also very well reproduced by the simulations. ∆R(µ)
(Fig. 3.3(c)), ∆R(all tracks) (Fig. 3.3(d)), mµµ (Fig. 3.3(e)) and mµµγ (Fig. 3.3(f)) show nearly
perfect agreement. As for the radiative signal the BDT output shows differences between data
and simulation originating from the same reasons. The variable newIsPhoton cannot be plotted
as it is only defined for pT,γ ≥ 2 GeV/c.
For the radiative signal as well as for background photons differences are observed between data
and simulation. As the BDT is crucial for the photon selection and its efficiency, these differences
are taken into account in Section 3.8.2 with a correction factor.

3.5 Z Selection

The Z boson is selected via the decay muons. The positive and negative muons need to fulfill
the following criteria:

• pT,µ± ≥ 20 GeV/c

• ηµ± ∈ [2.0, 4.5]

• mµµ ∈ [60 GeV/c2, 120 GeV/c2]

• Prob(χ2
tr/ndf) ≥ 0.01 (χ2 probability of the track fit)

•
σp
µ±

pµ±
≤ 0.1 (the relative uncertainty on the momentum of the muons has to be smaller

than 10%)

As large differences have been observed comparing data and simulation of the invariant masses
in the Z resonance region, the invariant mass resolution is matched in MC by convoluting the
distribution with a Gaussian with mean equal to zero and width σ = 1104 MeV/c2 [14]. These
effects origin from imperfect description of the detector in the simulations and a dependence of
the invariant masses from the azimuthal angle φ 2.
The effect is plotted in Fig. 3.4 for the invariant mass of the muons of an inclusive Z → µµ
sample and the class background photons. At low masses the data is polluted with background
and non resonant signal like contribution from Drell Yan γ∗ → µµ. Due to this fact, the data is
scaled with a factor of 1.16. This factor is obtained by a binned maximum likelihood fit to data
with RooFit [26]. The Z signal is modeled with a Breit-Wigner distribution, the background
and Drell Yan is described by an exponential.

3.6 Photon Selection

The photons need to pass the following cuts. The last two are going to be discussed in detail in
Section 3.6.2 and Section 3.6.3.

• ηγ ∈ [1.8, 4.3]

• pT,γ ≥ 2 GeV/c

• |φγ | ∈ [0.1, 1.47]
⋃

[1.67, 3.04]

2for more information compare Ref. [9] in the section “momentum scale correction”
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Figure 3.3: Comparison between data and simulation for a sample enhanced background photons
with 1 GeV/c ≤ pT,γ ≤ 1.5 GeV/c.
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Figure 3.4: Comparison of data and simulation for the invariant masses of the muons. (a)
without smearing (b) with smearing of the simulation. The simulation is normalized
to 1. The data is scaled to 1.16.
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Figure 3.5: φγ distribution of the charged background with peaking mis-identification rate at
φγ = 0,±π/2 and ±π.

• ∆R(µ) ≥ 0.1

• BDT variable ≥ 0.05

• newIsPhoton ≥ 0.8

As the electromagnetic calorimeter only fully covers pseudo-rapidities between 1.8 and 4.3,
photons in this range are selected. The cut of pT,γ ≥ 2 GeV/c is applied, because background
photons are usually low energetic (cf. Fig. 3.1(a)) and ∼ 85% of the background is eliminated
with this cut. The cut on φ is due to the high mis-identification rate at φ = 0,±π/2 and ±π
(cf. Fig. 3.5 and Fig. 3.1(e)). The reasons are detector effects at these azimuthal angles. The φ
distribution should be flat and the regions where it is not are cut out.
After the Z and γ selection, 5331± 73 candidates remain and enter the fit procedure. The error
is calculated as the Poisson uncertainty.
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3.6 Photon Selection

variable explanation

CaloTrMatch
CaloID estimator : 2D chi2 for Track/CaloCluster
matching (neutral + charged)

ShowerShape CaloID estimator : 2nd order moment of the cluster (neutral)
ClusterMass CaloID estimator : MergedPi0Alg cluster Mass (neutral)
CaloNeutralSpd Spd Digits (0,1) associated to CaloHypo (neutral)
CaloNeutralPrs Prs Digits (0,sum) associated to CaloHypo (neutral)
CaloNeutralEcal Cluster energy associated to CaloHypo (neutral)
CaloNeutralHcal2Ecal Hcal/Ecal energy ratio associated to CaloHypo (neutral)
CaloNeutralE49 2x2/3x3 energy ratio associated to CaloHypo (neutral)
PhotonID Combined PDF for photonID (neutral)

Table 3.2: Explanation of the input variables of the BDT.

3.6.1 Strategy

1. Step: Select real photons from photon candidates. This means eliminating the charged
background.

2. Step: Select the hard signal and the radiative signal and reduce the class background
photons.

3.6.2 Multivariate Analysis: Boosted Decision Tree

For a proper analysis, the photons need to be selected carefully. A photon candidate is re-
constructed from a cluster in the ECAL without any track associated. This is a very loose
selection and in the hard photon signal MC only 74% of the selected photon candidates are
real photons. To distinguish between fake and real photons, a multivariate classifier based on a
boosted decision tree (BDT) of the TMVA framework (Toolkit for Multivariate Data Analysis)
[17] is used. The BDT is optimized to reject charged particles. The input variables (Fig. 3.6)
are shower shape variables and the matching of the cluster to tracks (explanations in Table 3.2)
and the BDT is trained and tested on the simulations. The signal is the hard signal class, the
background the charged background class which consists of charged hadrons and electrons.

In the variable CaloTrMatch the background is more often associated to a track, which is
obvious because the background comes from charged particles. The ShowerShape is wider for the
background because its origin are mainly hadronic particles. The variable CaloNeutralHcal2Ecal
is the ratio of the energy deposit from the HCAL to the energy deposit in the ECAL. For the
background, this variable is larger because the background are hadronic particles. In the variable
CaloNeutralEcal the energy which is associated to the calorimeter hypothesis is stored. As the
signal photons have higher momenta and energy, it is larger for the signal than background.
CaloNeutralE49 is the ratio of the energy between 2 × 2 cells and 3 × 3 cells. Because the
charged hadrons are often in a jet there is a higher energy deposit in the cells around the photon
candidate and for the background this ratio tends to be smaller.
All these variables make use of the wider shower shape of hadrons, the isolation of photons, the
track matching and the differences between the response in the SPD, PS, ECAL and HCAL for
hadrons and photons.
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Figure 3.6: Input variables of the BDT (signal in gray, background in blue).

This BDT has a good discrimination power. The ROC-curve is plotted in Fig. 3.7(a). It
illustrates the background rejection as a function of the signal efficiency. The cut efficiencies
and purities are displayed for 100 times more background than signal in Fig. 3.7(b). Due to
the small amount of Zγ events the signal efficiency needs to be high. Therefore a cut value of
the BDT output at > 0.05 is chosen maximizing the significance (cf. Fig. 3.7(b)). Based on an
estimation in simulation, before the BDT cut approximately 28% of the background is charged
background, the rest are background photons. After the selection this fraction is reduced to less
than 0.5%. From now on, the charged background is ignored since it is even further reduced
with the newIsPhoton selection discussed below.
The distributions for the BDT variable of the four classes from simulation is shown in Fig. 3.8

3.6.3 Select hard and radiative Signal

In a second step photons from decays of neutral mesons (mostly π0) are rejected while still
keeping the efficiency for the hard signal and the radiative signal photons high. If the transverse
momentum of a π0 is higher than 2 GeV/c, the two decay photons start to get merged in the
same ECAL cluster and the cluster shape is very similar to that of a single photon. Therefore
it is difficult to separate merged pions from single photons and a neutral pion can be easily
identified as a photon or vice versa.
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Figure 3.7: ROC curve of the BDT (a) and cut efficiencies of the output variable assuming 100
times more background than signal (b).
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Figure 3.8: The distributions for the BDT variable of the four classes from simulation with Z
selection only.

For this discrimination the variable newIsPhoton [22] 3 is used which is based on a TMVA MLP
[17] (root tool for multivariate analysis with the method “Multilayer Perceptrons”) with the
shape of the cluster, its squashiness, the shape of the tails and other preshower and ECAL
information as input [22]. It is defined for pT ≥ 2 GeV/c, because for lower pT the photons
from π0 decays are reconstructed in separate clusters. The output is roughly between 0 and 1
and for pT < 2 GeV/c newIsPhoton has a value of −10000. A cut of newIsPhoton ≥ 0.8 is cho-
sen, in order to keep the signal efficiency high while eliminating as much background as possible.

3So far, only internal LHCb documentation is available about this variable and no official paper.

31



3 Analysis

newIsPhoton
-10000 -5000 0

ev
en

ts
 (

n
o

rm
al

iz
ed

 t
o

 1
)

0

0.2

0.4

0.6

0.8

hard signal

radiative signal

background photons

charged background

newIsPhoton
0.2 0.4 0.6 0.8 1

ev
en

ts
 (

n
o

rm
al

iz
ed

 t
o

 1
)

0

0.05

0.1

0.15

Figure 3.9: Normalized distributions of the variable newIsPhoton for the different classes of
the simulations only applying the Z selection. If the pT,γ is smaller than 2 GeV/c,
newIsPhoton has the value −10000. This explains the peak at −10000.

3.7 Muon Reconstruction Efficiency

The reconstruction efficiency for muons is the product of the tracking and the muon identifica-
tion efficiency. These values are not calculated but taken from previous studies 4 [13], [20], [21].
The studies showed that the muon reconstruction efficiency depends on η. Dependencies on pT
or charge are small and can be neglected. The plots of the tracking- and muon identification
efficiency as well as their product for a single muon are shown in Fig. 3.10(a). The efficiency
for the Z reconstruction is basically the square of one muon reconstruction efficiency. Figure
3.10(b) shows the Z reconstruction efficiency as a function of ηµ+ and ηµ− .
These efficiencies however depend on the event multiplicity. Therefore it was checked in simu-
lation that the inclusive Z and Zγ sample have the same multiplicity distribution. The recon-
struction efficiency is calculated the following way for the two dimensional η-binning:

εµ-rec(ηµ) = εµ-tracking · εµ-ID (3.1)

εZ-rec(ηµ+ , ηµ−) = εµ+-rec(ηµ+) · εµ−-rec(ηµ−) (3.2)

Considering the possibility of different η distributions for the two signal classes, the efficiency
histograms are weighted with the number of events from simulation for each class. The resulting
average Z reconstruction efficiency for the class hard signal is:

εrec, hard signal = 0.939± 0.010 (3.3)

and for the radiative signal :

εrec, radiative signal = 0.940± 0.010 . (3.4)

4These studies use the tag and probe method with one muon satisfying all track and muon-id criteria and the
other muon is selected with looser criteria that depends on the efficiency to be measured.
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Figure 3.10: Tracking and muon identification efficiencies as a function of η (a) and the total Z
reconstruction efficiency in bins of η of the two muons (b) [13], [20], [21].

3.8 Photon Selection Efficiency

The photon selection efficiency is defined as the fraction of reconstructed signal events that
passed the photon selection.
Four stages lead to the calculation of the total photon selection efficiency:

1. Calculate the efficiency of the cut on newIsPhoton. An external tool [22] is used to calculate
the efficiency in bins of pT,γ .

2. Calculate the efficiency for the BDT selection for photons which are selected by the cut
on newIsPhoton.

3. Calculate the fraction of photons which do not convert into an electron positron pair in
simulation.

4. Calculate the geometrical efficiency for the cuts on φ assuming a flat distribution.

While the first efficiency is estimated from data all the remaining efficiencies are determined
from simulation. The total selection efficiency is the product of these three efficiencies.

3.8.1 newIsPhoton Efficiency

The newIsPhoton efficiency εnewIsPhoton is calculated with an external tool [22], which is data
driven. It uses samples of B0 → K∗γ and D0 → Kππ0 candidates and separates residual back-
ground by the sPlot techniques (a statistical tool to unfold data distributions [24]) to calculate
the efficiency in bins of pT,γ . The efficiency for newIsPhoton is plotted in Fig. 3.11 as a function
of pT,γ . It drops by a few percent for high pT,γ .
The average efficiency is obtained by weighting each bin with the number of events from simu-
lation. For the two signal classes the average efficiency is:

εnewIsPhoton, average, hard signal = 0.865± 0.014 (3.5)

εnewIsPhoton, average, radiative signal = 0.863± 0.014 (3.6)
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Figure 3.11: Efficiencies for the newIsPhoton cut in bins of pT,γ .

3.8.2 BDT Efficiency

Simulations are used for the calculation of the BDT selection efficiency εBDT. First, a two-
dimensional histogram in pseudo-rapidity (10 bins) and transverse momentum (10 bins) of the
photon is filled with the Monte Carlo generated data and selected by newIsPhoton. Then the
BDT selection cut is applied and a second histogram with the selected candidates is filled.
The ratio of the two histograms is the BDT selection efficiency for each bin. Repeating this
procedure for each event class leads to BDT selection efficiency for the different classes seper-
ately (Fig. 3.12). The projections in pseudo-rapidity and transverse momentum are plotted in
Fig. 3.13.

The histograms are weighted with the number of events per bin to get the average BDT selection
efficiency. The results for the signal classes are

εBDT, hard signal = 0.8432± 0.0021 (3.7)

εBDT, radiative signal = 0.8071± 0.0022 (3.8)

and for the background

εBDT, background photons = 0.5287± 0.0018 (3.9)

εBDT, charged background = 0.0193± 0.0012 . (3.10)

The efficiency for the radiative signal is slightly smaller than for the hard signal because of the
muon which is usually close to the photon. Selecting only photons with a higher isolation to
the muon leads to similar efficiencies (cf. Fig. 3.36 and Section 3.12). This selection reduces
the charged background nearly completely while keeping the signal efficiency high. Although
the BDT is only trained on charged background it also eliminates parts of the background pho-
tons. Because the input variables of the BDT are also shower shape variables (similar to the
multivariate analysis of newIsPhoton), the difference of the shower shape in the calorimeter of
two merged photons from π0 decays and a single photon from the hard or radiative process
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Figure 3.12: BDT selection efficiency for the hard signal (a), the radiative signal (b), background
photons (c) and the charged background (d) from simulation.
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Figure 3.13: BDT selection efficiency as a function of pT,γ (a) and ηγ (b) from simulation.
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Figure 3.14: (a) BDT variable distribution for simulation and data with the cut ∆R(µ) ≤ 0.2.
(b) Comparison of the hard signal and the radiative signal from simulation.

is the reason for the rejection of the background photons. Furthermore π0 photons are usually
surrounded by other particles which could lead to a track matched to the calorimeter cluster.

Correction for Differences between Data and Simulation

As Fig. 3.2(b) and Fig. 3.3(b) show a significant difference between the distribution of the BDT
variable between data and simulation, it is important to consider this fact. The distribution of
the BDT variable after the newIsPhoton cut is plotted in Fig. 3.14(a) for data and radiative
signal from simulation. The distributions are obtained by applying the cut ∆R(µ) ≤ 0.2 as in
Section 3.4. This selection still contains a small amount of background photons for data and
this fraction is estimated from simulation to be ∼ 2%. Therefore 2% of simulated background
photons are added to the simulation of the radiative signal.

Calculating the efficiency for data with the cut ∆R(µ) ≤ 0.2 in the same way as before results
in an average efficiency of

εBDT, radiative signal, data = 0.556± 0.021 . (3.11)

To take into account, that this efficiency is smaller due to the pollution through background
photons, the efficiency in the simulation is also recalculated with the same pollution. This
results in

εBDT, radiative signal, MC = 0.702± 0.004 . (3.12)

The difference between data and simulation is very big. The correction factor calculated from
Eq. (3.12) and Eq. (3.11) turns out to be

fcorrection = 0.79± 0.03 . (3.13)

The uncertainty is dominated by the small statistics from data.
As it is not possible to calculate εBDT, hard signal from data and because the distributions of
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Figure 3.15: Probability of a photon converting into an electron positron pair before entering
the ECAL, which is 1− εunconverted, in bins of pT,γ .

the hard and the radiative signal of the BDT variable are very similar (cf. Fig. 3.14(b)), the
differences between data and simulation are assumed to be identical for the two signal classes.
The small statistics and the assumption of similar behavior for the hard and the radiative signal
are the reasons for only applying half of the correction and to take half of the correction as a
systematic uncertainty. This leads to a correction of

fcorrection = 0.90± 0.10(sys) (3.14)

and the resulting BDT efficiencies are

εBDT, hard signal = 0.758± 0.002(stat)± 0.08(sys) (3.15)

εBDT, radiative signal = 0.726± 0.002(stat)± 0.08(sys) (3.16)

3.8.3 Photon Conversion Efficiency

A part of the photons which are produced at the primary vertex or nearby convert into an
electron positron pair. They are not anymore detected in the ECAL as a photon, but as an
electron and a positron. The BDT selection should remove this signature and therefore this part
of the signal is not measured anymore. The fraction of the photons which convert are shown
in Fig. 3.15 as a function of the true pT,γ . This plot is taken from Ref. [23]. The histogram
in Fig. 3.15 is weighted with the number of events per bin and the average photon conversion
efficiency, εunconverted, is calculated for the signal classes. εunconverted is the probability, that a
photon does not convert. It follows that εunconverted = 1− P (photon converts). The values are

εconversion, hard signal = 0.521± 0.002 (3.17)

εconversion, radiative signal = 0.517± 0.002 . (3.18)
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3.8.4 φ Selection Efficiency

Assuming a flat distribution in φ, the efficiency is the same for all different classes and it can be
calculated from pure geometrical considerations:

εφ-sel =
1.47− 0.1 + 3.04− 1.67

π
= 0.8722 (3.19)

3.8.5 Total Photon Selection Efficiency

The total photon selection efficiency for the hard signal is the product of the four different parts.
The errors are added in quadrature for the statistical and systematic uncertainty separately.

εγ-sel, hard signal = εnewIsPhoton ·εBDT ·εunconverted ·εφ-sel = 0.298±0.001(stat)±0.032(sys) (3.20)

And for the radiative signal the following values are obtained:

εγ-sel, radiative signal = εnewIsPhoton · εBDT · εunconverted · εφ-sel = 0.283± 0.001(stat)± 0.031(sys)
(3.21)

3.9 Trigger Efficiency

The trigger efficiency for selected and reconstructed muons is expressed as εtrig = Ntriggered/Nall

where Nall is the number of produced muons and Ntriggered the number of muons that passed
the trigger requirements. It is measured for the positive and negative muon separately in bins
of η.
Only triggering on a single muon trigger line on all three levels (cf. Table 3.1) allows to estimate
the efficiency for the second muon by a tag and probe technique.
It is calculated by:

εtrig =
Nprobe

Ntag
(3.22)

For the positive muon, candidates with triggered negative muons are used and these are called
tagged events. The sum of these events is Ntag. In the set of the tagged events each event with
a triggered positive muon is a probe event. The set of probe events is a subset of the tagged
events and their sum is Nprobe. The trigger efficiency for the positive muon is now calculated by
Eq. (3.22). With this definition it is possible to evaluate the trigger efficiency for the positive
and the negative muon separately (Fig. 3.16).

Because only one muon is required to trigger the event, the total trigger efficiency is one minus
the probability, that no muon has fulfilled the trigger condition:
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Figure 3.16: Trigger efficiencies for the positive and negative muon as a function of η (a) and
Trigger efficiencies for Z → µ+µ− and Zγ → µ+µ−γ in bins of ηµ+ and ηµ− (b).

εtrig = 1− (1− εtrig,µ+) · (1− εtrig,µ−). (3.23)

It can be calculated in bins of ηµ+ and ηµ− (Fig. 3.16(b)). In the same way as in Section 3.7
and Section 3.8 each bin is weighted with the number of events per bin from simulation. The
resulting average Z trigger efficiency for the class hard signal is:

εtrigger, hard signal = 0.95± 0.04 (3.24)

and for the radiative signal

εtrigger, radiative signal = 0.95± 0.04 . (3.25)

3.9.1 Global Event Cut Efficiency

The L0 trigger uses a global event cut. In Table 3.1 the L0 cuts are explained and only events
with less than 600 SPD hits are selected. This cut is not considered in the trigger efficiency
since it does not depend on the muon which has fired the triggerline. It is always applied and
that is why it is called a global event cut.
For this global selection it is important to estimate the efficiency as well. Since the multiplicity,
which is described by the number of SPD hits, of the events is described insufficiently in the
simulations (cf. Fig. 3.2(h) and Fig. 3.3(h) as well), this efficiency has to be calculated from
data. It is difficult to isolate the hard signal events from the data sample, but the multiplicity
in simulation is similar for the radiative signal and for the hard signal (cf. Fig. 3.17(a)). The
global event cut efficiency, εGEC, can be calculated for the radiative signal by selecting events
with ∆R(µ) ≤ 0.2 and extrapolated to the hard signal with a correction factor arising from the
small differences in simulation (cf. Fig. 3.17(a)). This procedure assumes identical difference
between data and simulation for both classes.
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Figure 3.17: Comparison of the distribution of the number of SPD hits for the radiative sig-
nal and the hard signal for simulation (a) and the data compared to simulation
(SPD hits× 1.6) for the radiative signal (b).

The number of SPD hits can be described by an analytic function called the gamma distribution.
The general formula for the probability density function of the gamma distribution is

f(x) =

(
x−µ
β

)γ−1
exp

(
−x−µ

β

)
βΓ(γ)

x ≥ µ; γ, β > 0 (3.26)

where γ is the shape parameter, µ is the location parameter, β is the scale parameter, and Γ is
the gamma function which has the formula

Γ(a) =

∫ ∞
0

ta−1e−tdt . (3.27)

To determine the efficiency the gamma distribution f(x) is fitted to the data selected by the cut
∆R(µ) ≤ 0.2 in the range 0 − 600 with a binned maximum likelihood fit with the RooFit tool
[26] (cf. Fig. 3.18(a)). The efficiency is

εGEC, radiative signal =

∫ 600
0 f(x)dx∫∞
0 f(x)dx

= 0.914 (3.28)

In order to estimate the error, the data only requiring the trigger L0DiMuon to be fired (which
has a global event cut SPD hits ≤ 900) is fitted with a gamma distribution in the range 0− 900
(cf. Fig. 3.18(b)). The efficiency, calculated analog to Eq. (3.28), is found to be 0.939. The
difference between these two values is the uncertainty on εGEC, radiative signal.

εGEC, radiative signal = 0.914± 0.025 (3.29)

When looking at Fig. 3.17(b) it seems that the simulation fits the data if the number of SPD
hits is multiplied by 1.6. This means the global event cut at 600 in the data is equivalent to a
global event cut at 375 in the simulation. With this information the correction factor for the
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Figure 3.18: Data fit to the number of SPD hits with and without the global event cut at
SPD hits ≥ 600 to estimate εGEC.

εGEC, hard signal is calculated as the ratio of the two integrals from 0 to 375 of the hard signal
and the radiative signal from 3.17(a). This leads to the correction factor

fcorrection =

∫ 375
0 hard signal d(SPD hits)∫ 375

0 radiative signal d(SPD hits)
= 1.024± 0.006 (3.30)

where the uncertainty is obtained from varying the value of 375 as a global event cut in simulation
from 350 to 400.
Combining εGEC, hard signal with fcorrection leads to

εGEC, hard signal = 0.936± 0.026 (3.31)

3.10 Fit Procedure to determine the Signal Yield

The 5331 selected Zγ candidates enter the fit procedure. The strategy for the fit consists of
three steps. First, the fraction of the radiative signal, fradiative signal, is determined. Afterward
this fraction is fixed. The second step is a toy model of the fit for the determination of the hard
signal to understand the performance of the data fit. The last part is to get the hard signal
fraction, fhard signal, with a fit to data and a correction with the response matrix from the toy
fit. For these fits, variables which distinguish between the hard signal, the radiative signal and
background photons are needed.
In Fig. 3.1(d) the variable ∆R(µ) is shown. It has a good separation power for the radiative
signal to all other classes, which have similar distributions in this variable. That is because the
photons of the radiative signal origin from the muons of the Z decay and therefore should be
close to the muon track.
Also the invariant mass of the two muons, mµµ (cf. Fig. 3.1(f)), has some separation power,
because for the radiative signal a part of the energy of the two muons is radiated with the photon
and therefore mµµ tends to be smaller than the actual Z mass whereas the classes hard signal
and background photons reproduce the Z peak. ∆R(µ) and mµµ can both be used to separate
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the radiative signal.
The next three variables make it possible to isolate the hard signal. The distance ∆R(all Tracks)
should have separation power between the hard and the radiative signal on one side and back-
ground photons on the other side (cf. Fig. 3.1(c)):

• The hard signal is usually well isolated.

• The radiative signal photons are near to the muon tracks and therefore are dominated by
the distance to the muons.

• The main part of background photons originate from π0 or other neutral mesons in a jet
and that is the reason why the ∆R to the next track tends to be smaller than for the hard
signal.

The second variable which discriminates between the hard signal and background is the trans-
verse momentum of the photon (pT,γ , cf. Fig. 3.1(a)). The photons originating from decays of
neutral mesons, the background photons, have lower momenta and energy than the photon from
the hard or the radiative signal classes. Since the pT,γ distribution is very sensitive to higher
order corrections and the saturation of the ECAL, this variable is not used for the fit, but only
for cross-checks.
The third variable which is being used for the hard signal fit is the invariant mass of the two
muons and the photon mµµγ (cf. Fig. 3.1(g)). It discriminates between all different classes.
The radiative signal reproduces the Z peak. Since the background photons tend to have smaller
momenta than the hard signal photons their invariant mass is smaller.
The fit methods are template fits with the ROOT tool TFractionFitter. As input templates, the
variables in simulations of the different classes are used. The histograms are scaled in a way,
that the χ2 between the data and the sum of fitted templates is minimized.

3.10.1 Radiative Signal Fit

A template fit to ∆R(µ) is used for the determination of fradiative signal. Two histograms from
Monte Carlo simulations are used for the templates:

• The ∆R(µ) distribution of the radiative signal.

• The ∆R(µ) distribution of the background photons, as the distribution of the hard signal
is exactly the same (cf. Fig. 3.1(d)), only one of them is needed.

The only free parameter is fradiative signal (fbackground photons and hard signal = 1 − fradiative signal).
The results are plotted in Fig. 3.19(a) and the values are:

fradiative signal = 0.233± 0.012

fbackground photons and hard signal = 0.767± 0.016
(3.32)

The quality of the fit is good, the ratio χ2/ndf is:

χ2

ndf
= 1.419 (3.33)
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Figure 3.19: The template fit to ∆R(µ) to determine fradiative signal with signal (a) and without
signal (b).

In Fig. 3.19 the fit with and without the radiative signal is plotted. It is obvious that Fig. 3.19(b)
does not describe the data. At low ∆R(µ) the radiative signal is clearly missing and the fit
compensates that by overshooting in the region of ∆R(µ) ∈ [1, 1.8]. While the fit with the
radiative signal describes the data very well without any other difference from data except
statistical fluctuations (see pulls).
The invariant mass of the muons is used as a cross-check. The distributions for the radiative
signal and background photons in the variable mµµ are scaled according to the fractions obtained
from the fit to ∆R(µ) in Eq. (3.32) and summed up. The result is plotted in Fig. 3.20(a) and
the agreement of data and the sum of the templates is:

χ2

ndf
= 1.500 (3.34)

The χ2 is slightly worse because the mass distribution is already not so well described for the
inclusive Z sample [4].
As comparison the distribution without signal is shown again (Fig. 3.20(b)). The data is not
described by background photons and the hard signal only. In the lower mass region the his-
togram undershoots the data and therefore is too high at the Z resonance. It is obvious that
also in the cross-check the distribution with the radiative signal is preferred.

Toy Fit and Correction for the Radiative Signal Fit

The same procedure as in the next section 5 is used to correct fradiative signal from the previous
section for a possible bias of the fit procedure. Simulation is used to do a toy study. The absolute
value of the residuals as a function of fradiative signal and n (the number of toy candidates) is
plotted in Fig. 3.21. The residuals are small and all fits are successful which means that the fit
is stable and performs well.

The response matrix for n = 5331 candidates and 200 fits for fradiative signal = 0.150, 0.155, 0.160,
..., 0.395 is shown in Fig. 3.22(a). It is used to correct the fit value from the previous section.

5for further information about the concept and ideas behind this study go to Section 3.10.2
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Figure 3.20: Cross-check with fractions determined by the fit to ∆R(µ) for the invariant mass
of the muons (Z mass) with signal (a) and without signal (b).
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Figure 3.21: The absolute value of the residuals of the toy fits to ∆R(µ) for 50 tries in total are
shown. The black dot is the result from the fit to data.

Figure 3.22(b) is used to determine the errors on the corrected value.
The correction is almost negligible with only 1.5%. The corrected value is

fradiative signal = 0.237± 0.012 (3.35)

and from now on this fraction is fixed.

3.10.2 Toy Fit

In order to understand the performance of the fit to mµµγ and ∆R(all tracks), toy studies with
simulations are performed. The simulated samples are split into two parts. The first is used as
data for the fit (toy data), the second to determine the templates. This splitting is necessary to
avoid correlations between the toy data and the templates. For the toy data the distributions
are normalized after the selection cuts for the hard signal, the radiative signal and background
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Figure 3.22: (a) The response matrix for the toy fit to ∆R(µ). On the x-axis is the fit value, on
the y-axis the fit input. (b) is the plot of the p-value.

photons and then added with different fractions 6 (e.g. fhard signal = 0.120, fradiative signal =
0.237, fbackground photons = 0.643). The fraction of the radiative signal is always set to 0.237±0.012
(from Section 3.10.1). The resulting distribution is used to generate a toy data-set with n random
events. This generated histogram is the toy data. The templates are then fitted to the toy data
and compared to the input.
The only free parameter left is fhard signal (fbackground photons = 1 − (fradiative signal + fhard signal))
and fradiative signal can vary inside its uncertainty band. The procedure is executed for different
signal fractions and total number of events to understand the performance of the fit as a function
of these variables. Because the fit sometimes crashes, the fit is repeated 50 times for each
number of events and signal fraction and the absolute value of the residuals (|fhard, input −
fhard, fit|/fhard, input) is averaged over all successful attempts. This toy fit study is repeated for
a fit to mµµγ and ∆R(all tracks) in order to resolve the question which fit performs better and
is more reliable and stable.

Toy Fit to mµµγ

Figure 3.23 shows three examples for toy fits to mµµγ for hard signal fractions of 25, 12 and 6%.
For all three the number of events is equal to the number of real data events (n = 5331) and
fhard signal is varied. The left plot shows the toy data, the middle the fit without signal and the
right the fit with signal. They should give an impression how this study works and performs.
In Table 3.3 the results of these examples are presented. All three examples prefer the fit with
signal according to the χ2. The extracted signal fraction is however higher than the input.

In Fig. 3.24(a) the residuals as a function of the number of events and fhard signal are shown.
There is an overview over possible values (Fig. 3.24(a) and (b)) and a magnification of the
region where the result is expected to be (Fig. 3.24(c) and (d)). For all bins the fit procedure is
successful in more than 80% of the cases (cf. Fig. 3.24(b) and (d)) which means it is stable. As
long as the signal fraction is higher than 5% and there are more than 500 signal events, the fit
has uncertainties below 30%.

6The charged background class is ignored, because the BDT selection should have removed them nearly com-
pletely.
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fhard signal = 0.25
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fhard signal = 0.12
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fhard signal = 0.06

Figure 3.23: Toy model for the template fit to mµµγ . On the left: Input distributions of the
different classes and their sum which is the toy data. In the middle: Fit with
background only. On the right: Fit with background and signal. The data points are
the black dots, the hard signal is in black, the radiative signal in green, background
photons in red and the result of the fit in magenta.

variable true values fit result without signal fit result with signal

fhard signal 0.250 0.281± 0.018
fradiative signal 0.237 0.225± 0.012 0.249± 0.016

fbackground photons 0.513 0.784± 0.014 0.468± 0.021
χ2/ndf 9.185 1.177

fhard signal 0.120 0.150± 0.016
fradiative signal 0.237 0.225± 0.012 0.225± 0.015

fbackground photons 0.643 0.787± 0.014 0.629± 0.021
χ2/ndf 3.959 1.405

fhard signal 0.060 0.095± 0.016
fradiative signal 0.237 0.249± 0.015 0.249± 0.021

fbackground photons 0.703 0.756± 0.014 0.655± 0.022
χ2/ndf 2.558 1.496

Table 3.3: Results of examples of the toy fit to mµµγ .
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Figure 3.24: The residuals of the toy fits to mµµγ (left) and the number of successful fits for
each bin (right) of 50 tries in total are shown. On top is an overview, below a
magnification of the region where the fit values are expected to be. The black dot
is the result from the fit to data.

It can be summarized that the fit is stable and performs as good as it is possible with the limited
statistics.

If looking at various single fits (cf. Fig. 3.23 and Table 3.3) it seems likely that the fit has a bias
and more often has too large or too small signal fractions, depending on the input variables. To
check this the toy study is repeated with the number of events equal to the number of selected
data candidates (n = 5331). To minimize the statistical uncertainties, the fit is repeated 200
times for each signal fraction fhard signal = 0.000, 0.005, 0.010, ..., 0.245. The results are filled in
a two dimensional histogram with fhard signal (fit value) on the x-axis and fhard signal (input) on
the y-axis. This histogram is equal to a response matrix and can be used to correct the result
in Section 3.10.3. It is plotted in Fig. 3.25.

Toy Fit to ∆R(all Tracks)

As in the previous section three examples for toy fits to ∆R(all Tracks) are presented first in
Fig. 3.26. For all three the number of signal events is n = 5331 and fhard signal is varied. The left
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Figure 3.25: Response matrix for the toy fit to mµµγ . On the x-axis is the fit value, on the y-axis
the fit input.

variable true values fit result with signal fit result without signal

fhard signal 0.250 0.310± 0.033
fradiative signal 0.237 0.249± 0.018 0.249± 0.021

fbackground photons 0.513 0.749± 0.015 0.440± 0.034
χ2/ndf 3.338 1.413

fhard signal 0.120 0.088± 0.035
fradiative signal 0.237 0.249± 0.021 0.249± 0.012

fbackground photons 0.643 0.750± 0.016 0.663± 0.037
χ2/ndf 1.039 0.902

fhard signal 0.060 0.045± 0.043
fradiative signal 0.237 0.249± 0.023 0.249± 0.012

fbackground photons 0.703 0.750± 0.016 0.706± 0.042
χ2/ndf 0987 0.970

Table 3.4: Results of examples of the toy fit to ∆R(all tracks).

plot shows the toy data, the middle the fit without signal and the right the fit with signal. In
Table 3.4 the results of theses examples are presented. The first two examples prefer the fit with
signal. The one with fhard signal = 6% has a too small χ2 and does not find the signal anymore
reliably.

In Fig. 3.27 the residuals of the toy fit to ∆R(all Tracks) are shown. There is an overview
over possible values (Fig. 3.27(a) and (b)) and a magnification of the region where the result
is expected to be (Fig. 3.27(c) and (d)). If the signal fraction is below 0.05 the fit is not able
to find the signal reliably and crashes regularly (cf. Fig. 3.27(b) and (d) where the number of
successful fits decreases rapidly with smaller signal fractions). Nevertheless for all bins the fit
procedure is successful in more than 50% of the cases (cf. Fig. 3.27(b) and (d)).
In general the performance is inferior to the toy fit to mµµγ . The uncertainties are 10 − 20%
higher and the fit crashes more often.

on the fhard signal. Thus the same study is applied and the results are plotted in Fig. 3.28 as a
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3.10 Fit Procedure to determine the Signal Yield
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fhard signal = 0.06

Figure 3.26: Toy model for the template fit to ∆R(all tracks). On the left: Input distributions
of the different classes and their sum which is the toy data. In the middle: Fit
with background only. On the right: Fit with background and signal. The data
points are the black dots, the hard signal is in black, the radiative signal in green,
background photons in red and the result of the fit in magenta.

response matrix.

A comparison between Fig. 3.25 and Fig. 3.28 shows again the better performance of the fit to
mµµγ . The fit values in Fig. 3.28 spread much more and therefore the band of possible results
is much wider.

3.10.3 Hard Signal Fit

As a last step of the fit procedure, the hard signal fraction (fhard signal ) is obtained. Section 3.10.2
showed that the fit to mµµγ is more stable and performs better than the fit to ∆R(all tracks).
However the fit is proceeded for both variables to cross-check and compare the results. The only
free parameter is fhard signal and fradiative signal can vary inside its uncertainties, like in the toy
fit.
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Figure 3.27: The residuals of the toy fits of ∆R(all Tracks) (left) and the number of successful
fits for each bin (right) of 50 tries in total are shown. On top is an overview, below
a magnification of the region where the fit values are expected to be. The black
dot is the result from the fit to data.

 (fit value)hard signalf
0 0.05 0.1 0.15 0.2 0.25

 (
in

p
u

t)
h

ar
d

 s
ig

n
al

f

0

0.05

0.1

0.15

0.2

1

10

210

Figure 3.28: Response matrix for the toy fit to ∆R(all tracks). On the x-axis is the fit value, on
the y-axis the fit input.
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3.10 Fit Procedure to determine the Signal Yield

Hard Signal Fit to mµµγ

The result of the template fit (Fig. 3.29(a)) is the following:

fhard signal = 0.095± 0.016

fradiative signal = 0.231± 0.020

fbackground photons = 0.673± 0.026

(3.36)

The quality of the fit is good, the ratio χ2/ndf is:

χ2

ndf
= 1.168 (3.37)

As comparison the fit without signal (Fig. 3.29(b), the only free parameter is fradiative signal inside
its error band) leads to:

fradiative signal = 0.225± 0.012

fbackground photons = 0.779± 0.014
(3.38)

The quality of the fit is inferior to the one with signal. The ratio χ2/ndf is:

χ2

ndf
= 2.684 (3.39)

The plots of these two fits are shown in Fig. 3.29 with the pulls below. The pulls are calculated
in the following way:

p =
hD − hF
σD

(3.40)

Where hD is the number of data events per bin, hF the fit value per bin and σD the uncertainty
on the data per bin.
At high masses, the fit without the hard signal undershoots the data due to the lack of the
high energetic hard signal photons while the distribution is well described if the hard signal is
included. The pulls clearly confirm this behavior. Until 100 GeV/c2 the pulls in the fit without
signal are negative, at higher masses they are positive while they are fluctuating around zero
over the full mass range for the fit with the radiative signal included in Fig. 3.29(a).

The cross-check variables for the fit are pT,γ and ∆R(all tracks). The agreement (χ2/ndf) of
data and the sum of the templates, scaled with the parameters from the fit, is calculated for the
fit with signal (Eq. (3.36)) and without signal (Eq. (3.38)). A comparison of the two values can
give an estimate of the quality of the fit. They are shown in Table 3.5.
The plots with pulls are in Fig. 3.30 and Fig. 3.31.

The pT,γ is not described well for the cross-checks with and without signal, especially in Fig. 3.30
at the saturation of the ECAL around pT,γ ≈ 10 GeV/c the simulation describes the data
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Figure 3.29: Template fit to mµµγ to determine fhard signal. In (a) the fit with signal is plotted,
in (b) without signal.

variable
χ2/ndf for

fit with signal fit without signal

pT,γ 1.854 3.696
∆R(all tracks) 1.119 1.195

Table 3.5: χ2/ndf for the cross-check variables using the fractions as determined from the tem-
plate fit to mµµγ with and without signal.

not adequately. At higher pT,γ the cross-check without the hard signal is always below data
indicating that high high momentum photons from the hard process are missing.
In Fig. 3.31 the cross-check without the hard signal overshoots the data at small values. The
reason for this is an overcompensation from the higher background photons fraction due to the
lack of hard signal at large ∆R(all tracks).
Both cross-checks definitely prefer the fit with hard signal.

Hard Signal Fit to ∆R(all tracks)

The result of the template fit to ∆R(all tracks) (Fig. 3.32(a)) is:

fhard signal = 0.068± 0.037

fradiative signal = 0.249± 0.012

fbackground photons = 0.686± 0.038

(3.41)

The quality of the fit is good, the ratio χ2/ndf:

χ2

ndf
= 1.142 (3.42)

The comparison to the fit without signal (Fig. 3.32(b)), where the only free parameter is
fradiative signal inside its error band, leads to:
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Figure 3.30: Cross-check with the fractions as determined from the template fit to mµµγ for the
variable pT,γ with signal (a) and without signal (b).
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Figure 3.31: Cross-check with the fractions as determined from the template fit to mµµγ for the
variable ∆R(all tracks) with signal (a) and without signal (b).

fradiative signal = 0.249± 0.014

fbackground photons = 0.753± 0.015
(3.43)

The quality of the fit is inferior to the one with signal. The ratio χ2/ndf is:

χ2

ndf
= 1.235 (3.44)

The difference in χ2 is small for the two fits but differences are observed in the description of
the data (cf. Fig. 3.32).
Due to the absence of the hard signal on the higher values of ∆R(all tracks) the fit raises the frac-
tion of background photons in order to match the data-points at higher values of ∆R(all tracks).
This leads to a slight overshoot at small ∆R(all tracks) because the distribution of the back-
ground photons is peaking at ∆R(all tracks) ≈ 0.2 while the shape of the hard signal is flatter
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Figure 3.32: Template fit to ∆R(all tracks) to determine fhard signal. In (a) the fit with signal is
plotted, in (b) without signal.

variable
χ2

ndf for
fit with signal fit without signal

pT,γ 1.888 2.854
mµµγ 1.416 2.918

Table 3.6: χ2/ndf for the cross-check variables using the fractions as determined from the tem-
plate fit to ∆R(all tracks) with and without signal.

and peaks at ∆R(all tracks) ≈ 0.5. But this effect is not that significant as in the fit to mµµγ .
This also becomes clear when looking at the uncertainties of two fits in Eq. (3.41) and Eq. (3.36).
The fit to mµµγ has much smaller uncertainties on the hard signal fraction.

The cross-check variables for the fit are pT,γ and mµµγ . The same considerations as in the last
preceding section apply. The agreement (χ2/ndf) of data and the sum of the templates, scaled
with the parameters of the fit, are shown in Table 3.6.

For this version of the fit both cross-checks prefer the fraction as determined by the fit with the
hard signal, too.

Correction with the Response Matrix

The values from the two fits are corrected with the response matrices (Fig. 3.25 and Fig. 3.28).
The lower uncertainty is obtained by finding the input value of the toy fit, that has a 16%
probability to have a larger fit value than the value from the fit to data. The upper uncertainty
is calculated equally, but the probability has to be 84% In Fig. 3.35 the probabilities for hav-
ing a greater fit value than the value from the fit to data are shown as a function of the true
input value. These plots are obtained from Fig. 3.25 and Fig. 3.28 by integrating from 0 to
fhard signal (fit value) for the channel along the x-axis for each fhard signal (input) bin.
This plot confirms again that the fit to mµµγ performs much better than the fit to ∆R(all tracks).
The procedure leads to a normal 1σ uncertainty level.
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Figure 3.33: Cross-check with the fractions as determined from the template fit to ∆R(all tracks)
for the variable pT,γ with signal (a) and without signal (b).
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Figure 3.34: Cross-check with the fractions as determined from the template fit to ∆R(all tracks)
for the variable mµµγ with signal (a) and without signal (b).

In Fig. 3.35(a) P (fhard signal(fit) > 0.095) = 0.5 is the corrected hard signal fraction.
P (fhard signal(fit) > 0.095) = 0.16 the lower 1σ confidence level limit and P (fhard signal(fit) >
0.095) = 0.84 the higher limit. In the case of the fit to ∆R(all tracks), Fig. 3.35(b), 0.095 has
to be replaced by 0.068.
This leads to the following hard signal fraction for the fit to mµµγ :

fhard signal = 0.095± 0.015 (3.45)

and for the fit to ∆R(all tracks):

fhard signal = 0.096± 0.040 . (3.46)

The uncertainties on fhard signal from the plot of the p-value are in good agreement with the
uncertainties from the fit to data (cf. Eq. (3.36) and Eq. (3.41)).

55



3 Analysis

 (true)hard signalf
0 0.05 0.1 0.15 0.2

 (
fi

t)
 >

 0
.0

95
)

h
ar

d
 s

ig
n

al
P

(f

0

0.5

1

(a)

 (true)hard signalf
0 0.05 0.1 0.15 0.2

 (
fi

t)
 >

 0
.0

68
)

h
ar

d
 s

ig
n

al
P

(f

0

0.5

1

(b)

Figure 3.35: Probability from the toy fits to get a larger fit value than the value from the fit to
data for mµµγ (a) and ∆R(all tracks) (b) which is basically the p-value.

Combination of the two Fits

The values for fhard signal are the weighted average of the fit to mµµγ and ∆R(all tracks). This
leads to a signal fraction of

fhard signal = 0.095± 0.014 . (3.47)

3.11 Systematic Uncertainties

In this analysis, the statistical uncertainty should dominate the measurement for the hard sig-
nal except the systematic uncertainty on εBDT. Due to the higher number of radiative signal
candidates the systematic uncertainty is more important for this class and is higher than the
statistical uncertainty. The errors contributing to the systematic uncertainty are summarized
in Table 3.7 and their relative uncertainty is shown. The other uncertainties are statistical as
they could be reduced with more data.
The most important factor is the uncertainty on εBDT originating from the problems in the
calculation of the efficiency of the BDT selection as mentioned in Section 3.8.2. The second
systematic uncertainty that plays an important role is the one on the integrated luminosity.
The systematic uncertainties are added in quadrature and the total systematic uncertainty for
the hard signal is 11.3% and for the radiative signal it is 11.7%.

3.12 Result

Having the signal yields for the radiative signal and the hard signal, fhard signal = 0.095± 0.014
and fradiative signal = 0.237 ± 0.012, the total number of candidates, n = 5331 ± 73, and the
integrated luminosity of 2.06± 0.07 fb−1 it is possible to calculate the production cross section
with the formula
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3.12 Result

quantity
relative uncertainty for

hard signal radiative signal

the integrated luminosity 3.5% 3.5%
εrec 1.1% 1.1%
εnewIsPhoton 1.6% 1.6%
εBDT 10.6% 11.0%
εunconverted 0.4% 0.4%

total 11.3% 11.7%

Table 3.7: Summary of the systematic uncertainties.

efficiency hard signal radiative signal

εrec 0.939± 0.010(sys) 0.940± 0.010(sys)
εtracking 0.978± 0.007(sys) 0.978± 0.007(sys)
εµ−ID 0.960± 0.007(sys) 0.961± 0.007(sys)

εγ−sel 0.298± 0.001(stat)± 0.032(sys) 0.283± 0.001(stat)± 0.031(sys)
εnewIsPhoton 0.865± 0.014(sys) 0.863± 0.014(sys)

εBDT 0.758± 0.002(stat)± 0.08(sys) 0.726± 0.002(stat)± 0.08(sys)
εφ−sel 0.8722 0.8722

εunconverted 0.521± 0.002(sys) 0.517± 0.002(sys)

εtrig 0.95± 0.04(stat) 0.95± 0.04(stat)

εGEC 0.936± 0.026(stat) 0.914± 0.025(stat)

εtotal 0.249± 0.013(stat)± 0.027(sys) 0.231± 0.012(stat)± 0.025(sys)

Table 3.8: Summary of the efficiencies for the signal classes and on the bottom the total efficiency.

σ =
n · fsignal

εtotal ·
∫
Ldt

where εtotal = εrec · εγ−sel · εtrigger · εGEC (3.48)

and the uncertainties are added in quadrature for the statistical and systematic uncertainties
separately. This results in

σpp→Zγ+X, hard signal = 987± 155(stat)± 112(sys) fb

σpp→Zγ+X, radiative signal = 2665± 196(stat)± 301(sys) fb
(3.49)

for the two signal classes separately. The total production cross section of Zγ is

σpp→Zγ+X = 3652± 351(stat)± 413(sys) fb . (3.50)

The theoretical predictions from Section 1.2.2 have an additional cut on the isolation between
the photon and the muons of ∆R(µ) ≥ 0.4. As this cut is not yet considered in the measurement
a correction has to be applied. The correction factors are calculated from simulation for the
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Figure 3.36: BDT efficiencies for the radiative signal for different photon isolation cuts.

two signal classes separately. Figure 3.1(d) shows that the hard signal is barely affected, while
a large part of the radiative signal is eliminated with this cut. The results for the correction
factors are

ftheory correction, hard signal = 0.9446± 0.0015(sys)

ftheory correction, radiative signal = 0.5281± 0.0032(sys) .
(3.51)

The radiative signal seems to look similar to the hard signal for higher photon isolation cuts.
The BDT efficiency, calculated from simulation and not yet applying the correction between
data and simulation, raises from 0.806±0.002 to 0.835±0.003 (cf. Fig. 3.36) while the efficiency
for the hard signal remains at 0.842 ± 0.002. Therefore the efficiencies from the hard signal
are used for the radiative signal as well for the calculation of the cross section with the cut
∆R(µ) ≥ 0.4.
The cross sections for the hard signal and the radiative signal are corrected with the factors in
Eq. (3.51). The product of Eq. (3.49) and Eq. (3.51) is

σpp→Zγ+X, hard signal = 932± 146(stat)± 106(sys) fb

σpp→Zγ+X, radiative signal = 1301± 95(stat)± 148(sys) fb
(3.52)

and the total measured production cross section of Zγ corrected for the theory cuts is

σpp→Zγ+X = 2233± 201(stat)± 254(sys) fb . (3.53)

A comparison to the theoretical next to leading order prediction of

σpp→Zγ+X = 2806.7± 1.7 fb [16] (3.54)

shows a 1.3σ difference between the theory prediction and the experimental measurement. This
is a reasonable agreement between the two values. The small difference could arise from overesti-
mation of efficiencies as the fit seems to be very stable and should not bias the result significantly.
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4 Conclusion and Outlook

The production cross section of Zγ in proton proton collisions at the LHCb experiment is found
to be

σpp→Zγ+X = 3652± 351(stat)± 413(sys) fb (4.1)

with the Z candidates reconstructed in the µ+µ− decay channel. These muons must have a
pT ≥ 20 GeV/c and η between 2 and 4.5. The photon is selected via a multivariate analysis and
is required to have a pT ≥ 2 GeV/c and η between 1.8 and 4.3. Between the muons and the
photon there must be an isolation of ∆R(µ) ≥ 0.1.
Raising the photon isolation cut of ∆R(µ) ≥ 0.4 reduces the production cross section to

σpp→Zγ+X = 2233± 201(stat)± 254(sys) fb (4.2)

due to the loss of the radiative signal where the photon is located close to the muons. The result
is in reasonable agreement with the theory prediction.
For a better result, the efficiency of the BDT should be calculated completely from data, or the
input variables of the BDT have to be reweighted from simulation to data in order to eliminate
these differences. The differences from data and simulation in the variable newIsPhoton do not
effect the efficiency as it is estimated from data and trigger- and reconstruction efficiencies for
the muons are in good agreement with previous measurements.
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