Sterne I: Zustandsgrößen

16. November, 2006

Laura Baudis, <u>Ibaudis@physik.rwth-aachen.de</u> Physikalisches Institut Ib, RWTH Aachen

Eigenschaften von Sternen

- Entfernungsbestimmung (Sternparallaxen)
- Leuchtkraft, absolute Helligkeit, bolometrische Helligkeit
- Filtersysteme, Farbindex, Absorption und Extinktion
- Sternspektren
- Spektralklassifikation
- Korrelation zwischen Beobachtungsgrößen

HR Diagramm

Farben-Helligkeitsdiagramm

- Temperatur, Sternradien, Sternmassen
- Literatur: Carroll, Ostlie, Kapitel 3, 7, 8; Weigert, Wendker, Wisotzki, Kapitel 5; Unsöld, Baschek, Kapitel 6

Sternparallaxen

- Die Messung der intrinsichen Helligkeit der Sterne ist eng mit der Bestimmung ihrer Entfernung verbunden. Entfernungsbestimmungen von astronomischen Objekten sind jedoch extrem schwierig!
- Parallaxe p: Differenz zwischen den Winkel α_1 und α_2
- Es gibt verschiedene Parallaxeneffekte, je nach Art der Standortveränderung:

tägliche Parallaxe durch Erdrotation

Horizontalparallaxe: Maximalwert der täglichen Parallaxe am Horizont

=> sehr klein, für Sonne ist dies php,o = 8.8"

Sternparallaxen

- jährliche Parallaxe p durch Bahnbewegung der Erde um die Sonne
- es gilt:

$$\sin p = \frac{a}{r}$$
$$r = \frac{1AE}{\sin p} \approx \frac{1}{p}AE$$

- (da p meistens klein it: $sinp \approx p$)
- Mit 1 radian = $57.3^{\circ} = 2.063 \times 10^{5"}$

• Wir definieren eine neue Einheit:

1 pc (parallax-second)= $2.063 \times 10^5 AE = 3.086 \times 10^{18} cm$

Sternparallaxen

• Damit gilt:

$$r=\frac{1}{p''}pc$$

• **Definition Parsec**: 1 pc ist die Entfernung, in der p = 1"

1 pc = 206265 Erdbahnradien = $3.086 \cdot 10^{16}$ m = 3.26 Lichtjahre

- Nächstgelegener Stern: Proxima Centauri mit p = 0.772" \rightarrow r = 1.3 pc
- (zuerst von Friedrich Wilhelm Bessel in 1838 gemessen)
- 61 Cygni: Bessel in 1838 -> p=0.361" => r =1/p" pc = 3.16 pc = 10.3 ly
- (heutiger Wert ist 11.1 ly)

α

Erdbahn

Strahlungsleistung

- Leuchtkraft L = die pro Zeiteinheit von der ganzen Sternoberfläche in allen Frequenzen ausgestrahlte Energie
- Einheit: Leuchtkraft der Sonne

$$L_{\odot} = 3.86 \cdot 10^{26} W = 3.86 \cdot 10^{33} erg / s$$

v

• Die Leuchtkraft (Integral über den Energiefluss F_{ν}):

$$\boldsymbol{L} = 4\pi \boldsymbol{R}^2 \boldsymbol{F} = 4\pi \boldsymbol{R}^2 \int \boldsymbol{F}_{\boldsymbol{v}} \boldsymbol{d} \boldsymbol{v}$$

- Ausserhalb der Quelle: L ist entfernungsunabhängig, da F ~ r^{-2}
- Typische Sterne: L variiert von etwa

$$10^{-4} L_{\odot} \rightarrow 10^{6} L_{\odot}$$

Absolute Helligkeit

• Bisher hatten wir die **scheinbare Helligkeit** definiert, mit $m_{(Vega = \alpha Lyrae)}=0$ bei allen v:

$$\boldsymbol{m} = -2.5 \cdot \log_{10} \frac{\boldsymbol{S}}{\boldsymbol{S}(\boldsymbol{Vega})}$$

 Absolute Helligkeit: scheinbare Helligkeit in einer Entfernung r₀ = 10 kp. Maß f
ür die intrinsische (entfernungsunabh
ängige) Helligkeit:

$$m - M = -2.5 \cdot \log_{10} \frac{S(r)}{S(r_0)}$$
$$M = m - 2.5 \log_{10} \left(\frac{r^2}{r_0^2}\right) = m - 5 \log_{10} \left(\frac{r}{r_0}\right)$$

• Der **Entfernungsmodul** ist definiert als:

$$\boldsymbol{m} - \boldsymbol{M} = 5\log_{10}\left(\frac{\boldsymbol{r}}{10\,\boldsymbol{pc}}\right) = 5\log_{10}\left(\frac{\boldsymbol{r}}{1\,\boldsymbol{pc}}\right) - 5^{\boldsymbol{m}}$$

• Beispiel: Vergrößerung von m-M um +5^m => die Entfernung r wächst um einen Faktor 10

Absolute Helligkeit

• Beispiel:

- Die scheinbare Helligkeit der Sonne ist $m_{Sonne} = -26.81$ und die Entfernung ist 1AE=4.848x10⁻⁶ pc
- => die absolute Helligkeit der Sonne:

$$M_{Sonne} = m_{Sonne} - 5 \log_{10} d + 5 = 4.76$$

• und der Entfernungsmodul:

$$m_{Sonne} - M_{Sonne} = -31.57$$

Bolometrische Helligkeit

• m_{bol} : definiert als die **Gesamtstrahlung über alle** λ (kaum messbar, da viele Detektoren erforderlich und manche Bereiche werden von der Atmosphäre absorbiert)

$$m_{bol} = m_V + BC$$

- BC = bolometrische Korrektur, so definiert dass BC < 0 f
 ür fast alle Sterne. BC ≈ 0 f
 ür F→G Sterne, da diese ihr Emissionsmaximum im V-Band haben
- Bolometrische Magnituden werden i.A. nur für Sterne benutzt

Bolometrische Korrekturen als Funktion von Teff (Flower, ApJ 1996)

Filtersysteme

- Die gemessenen Flüsse sind nicht monochromatisch, sondern werden über einen Filter-Bandpass integriert (typische Breiten: mehrere 100 bis 2000 Å)
- Beispiel: Johnson UBVRIJHKLMN (U=NUV, B = Blau, V= sichtbar (Grün), R = Rot, I =NIR, JHKLMN=IR); Sloan Digital Sky Survey Filter u´g´r´i´z´ (eventuell Standard in der Zukunft)
- Beispiel (Tabelle): absolute Strahlungsströme eines A0V Sterns für die effektiven λ des Johnson Filters

Filtersysteme

Transmissionkurve f
ür das UBVRI System, und das Spektrum eines G5V Sterns (sonnen
ählich) zum Vergleich

Der Farbindex

• Definition: Unterschied zweier Magnituden in verschiedenen Filtern

Beispiel: U-B = m_U - m_B

 $B-V = m_B - m_V$

.... (bis ins nahe Infrarot)

- Stern mit kleinerem Farbindex ist "blauer", Stern mit größerem Farbindex ist "roter".
- Farbindex wird oft auch "Farbe" genannt

Verteilung der Sterne in der U-B versus B-V Ebene (Typen, B, A, F ... werden später erklärt)

Beispiel:

Stern (O5) mit T_{eff}=44500K und U-V=-1.19, B-V = -0.33 => negatives U-V => Stern scheint heller im UV aus Wienschen Verschiebungsgesetz: λ_{max} =652A°

Absorption und Extinktion

- Der auf der Erde gemessene Strahlungsfluss astronomischer Objekte muss auf mehrere Effekte korrigiert werden.
- Absorption in der Erdatmosphäre:

$$m_{\lambda,corr} = m_{\lambda,obs} - \frac{\mathcal{E}_{\lambda}}{\cos\theta}$$

- gültig für $\theta < 70^{\circ}$; typische Werte für $\epsilon_{\lambda} = 0.1$ (bei 4000Å)- 0.3 (bei 8000Å)
- Extinktion und Absorption durch Staubkörner und Gas zwischen Objekt und Erde (Strahlung wird durch Absorption und Streuung geschwächt, kann in anderen Wellenlängen re-emittiert werden; Licht wird durch das ISM gerötet, da blaues Licht stärker als rotes gestreut und absorbiert wird). Dies wird durch den Farbexzess beschrieben:

$$\boldsymbol{E}_{\boldsymbol{B}-\boldsymbol{V}} = (\boldsymbol{B}-\boldsymbol{V})_{obs} - (\boldsymbol{B}-\boldsymbol{V})_0$$

• Die Extinktion für den Filter V ist:

$$m_{V,obs} = m_{V,0} + A_V$$

Die Beziehung zwischen Farbexzess und Extinktion (empirisch)

$$A_V = 3.1 E_{B-V}$$

=> kann man den Farbexzess messen=> visuelle Extinktion

Sternspektren

- liefern viele detailierte Informationen über Sterneigenschaften
- aus der Analyse von Sternspektren
- => Oberflächentemperaturen, Massen, Radien, Helligkeiten, chemische Zusammensetzung

• Historisch

William Wollaston: berichtete über dunkle Linien im Sonnenspektrum in 1802

Joseph Frauenhofer: entdeckte viele Absorptionslinien im Sonnenspektrum (1816-1820) und dokumentierte diese mit großer Genauigkeit (~ 475 Linien in 1816)

Gustav Kirchoff und Robert Bunsen (1859): identifizierten die Frauenhofer D-Linien in der Sonne (und andere Sterne) als Absorptionslinien von Na. Sie identifizierten auch 70 dunkle Linien im Sonnenspektrum als 70 helle Emissionslinien von Eisen => Beginn der physikalischen und chemischen Analyse der Sterne

Helium (damals auf der Erde nicht bekannt) wird 1869 spektroskopisch in der Sonne entdeckt (von Helios)

Doppler: sagt 1842 den "Doppler" Effekt vorher. Schreiner und Keeler verifizieren ihn in 1890

Sechi, Vogel und Draper (1880): Beginn der spektralen Klassifikation => Henry-Draper Katalog mit 200 000 Sterne (1918 - 1924 mit Prisma-Platten)

 Edward Pickering, Williamina Flemming und Annie Cannon: entwickeln ein Klassifikationssystem der Sternspektern (1888 - 1901); L und T erst 1999 bzw 2000 hinzugefügt

O - B - A - F - G - K - M - L - T

colour:	blue	white	yellow	red	infrared
B - V :	-0.3	0.0	0.4	0.8	1.5

Annie Cannon

- Eindimensionale Sequenz in Farbe, effektiver Temperatur T_{eff} und variierende Stärke der Absorptionslinien
- feinere Unterteilung von 0-9 B0, B1, ..., B9, A0,..., A9, usw
- die Buchstaben: keine Abkürzungen, keine Bedeutung; Sätze zum Auswendiglernen:

Oh Be A Fine Girl/Guy, Kiss Me

Ohne Bier Aus'm Fass Gibt's Koa Mass

• Historisch bedingte Bezeichnung:

"frühe" Typen für die Klassen O, B, A

"mittlere" Typen für die Klassen F, G

"späte" Typen für die Klassen K, M, L, T

- jedoch haben Spektralklassen nichts mit Alter zu tun! die physikalische Basis des Klassifikationsschema war erstmal unklar!
- Spektraltyp der Sonne: G2

$O \rightarrow T$:

Maximum von S(λ) von kleinen zu großen Wellenlängen Sternfarbe ändert sich von bläulich-weiß über gelb zu rot

→ Spektralklassen unterscheiden sich hauptsächlich durch T_{eff}

Spektren und Spektralklassen: O und B

Spektren und Spektralklassen: A und F

Spektren und Spektralklassen: G und K

Spektren und Spektralklassen: M und L

Spektraltyp und Farben

• Spektraltyp und photometrische Farbe B-V sind sehr gut korreliert:

• Spektraltyp O

frühe O-Sterne: im optischen dominieren die Absorptionslinien von H⁺, im UV starke Linien von hochionisierten CNO-Elementen (C³⁺, Si³⁺). späte O-Sterne: diese Linien werden schwächer und von Linien niedriger Ionisationsstufe abgelöst. Im Optischen: He⁰ und H⁰ Linien. Maximum des Kontinuums liegt in UV-Bereich

• Spektraltyp B

He-Linien werden schwächer; keine He⁺ Linien. H⁰-Linien werden stärker. Maximum im UV, jedoch steigt des Anteil des optischen Kontinuums

• Spektraltyp A

H⁰-Linien (Balmer) erreichen ihr Maximum. Erste Linien von Metallen - Fe⁺, Ca⁺ - treten auf. Das Maximum liegt im optischen Spektralbereich

• Spektraltyp F

H⁰-Linien werden schwächer; die Stärke der Metallinien wächst. Es treten Linien neutraler Atome wie Fe⁰, Cr⁰ auf.

Spektralklassen: Eigenschaften

• Spektraltyp G

die Linien der neutralen Metalle werden stärker, die der ionisierten schwächer. Balmersprung und Balmerlinien verschwinden aus dem Spektrum. Das Kontinuum verschiebt sich innerhalb des optischen Spektralbereichs zu größeren Wellenlängen

• Spektraltyp K

Spektrallinien sind entweder auf neutrale Atome (Ca⁰) oder auf einfache Moleküle wie CH und CN zurückzuführen

• Spektraltyp M

Spektren werden durch Molekülbanden dominiert, insbesondere des TiO für späte M-Sterne. Das Maximum des Kontinuums liegt im nahen Infraroten

• Spektraltyp L

Stärke der TiO Banden nimmt ab. Es kommen Banden von Metalhydriden (FeH, CaH) und Wasser (H₂O) dazu

• Spektraltyp T:

Kaum Information im optischen Bereich. Im nahen IR dominieren Apsorptionsbanden von H₂O und CH₄

Temperatur der Sterne

• Leuchtkraft, Radius und die Effektivtemperatur eines Sterns sind korreliert:

$$\boldsymbol{L} = 4\pi \boldsymbol{r}^2 \boldsymbol{\sigma} \boldsymbol{T}_{eff}^4$$

 T_{eff} = Temperatur eines schwarzen Strahlers, der mit der selben Gesamtintensität wie der Stern strahlt

Absorptionslinien und Temperatur

• Variation der Absorptionslinien als Funktion der Temperatur Teff

 => unterschiedliche Stärke der Absorptionslinien von der T-Abhängigkeit der Ionisations/ Anregungszustände der Atome

Leuchtkraftklassen

- Innerhalb einer Spektralklasse -> markante Unterschiede; zB Schärfe der einzelnen Absorptionslinien
- zB Sterne in einem Sternhaufen: je schmaler und schärfer die Linien, desto leuchtkräftiger sind die Sterne
- da f
 ür eine Spektralklasse T_{eff} ~ ct => gr
 ößeres L bedeutet gr
 ößerer Radius => niedrigere
 Oberfl
 ächengravitation (bei gleichbleibender Gesamtmasse) => kleinere Druckverbreiterung von
 Spektrallinien
- William Morgan und Phillip Keenan (1950er): erweiterten das Konzept der Spektralklassifikation in ein zwei-dimensionales System, das MK-System. Es wurden 6 Leuchtkraftklassen definiert:

Leuchtkraftklasse I: Überriesen (la und lb)

Leuchtkraftklasse II: helle Riesen

Leuchtkraftklasse III: Riesen

Leuchtkraftklasse IV: Unterriesen

Leuchtkraftklasse V: Hauptsequenz-Sterne (Zwerge) 80%-90% aller Sterne

Leuchtkraftklasse VI: Unterzwerge

W.D. : Weisse Zwerge

Leuchtkraftklassen

• Übersetzung LK-Klasse in Leuchtkraft: abhängig vom Spektraltyp

Beispiele:

- Sonne: G2 V
- Sirius A2 V
- Deneb (α Cyg) A2 Ia
- Arkturus (α Boo) K2 III
- Beteigeuze (α Ori) M2 lab

Weisse Zwerge: eigene Spektral- und LK-Klasse (DA, DB Haupttypen)

• Kennt man die Entfernung der Sterne (und somit die absoluten Helligkeiten), so kann man das in der Astrophysik fundamentale

Farben-Helligkeits-Diagramm oder das Hertzsprung-Russell-Diagramm auftragen

- Historisch: 1910 Rosenberg, Hertzsprung und Russel führten das HR-Diagramm ein -> zeigt Leuchtkraft der Sterne als Funktion der effektiven Oberflächentemperatur
- Jedoch: HR-Diagramm ist mit Farben-Helligkeits-Diagramm eindeutig korreliert, und letzteres ist leichter direkt aus Beobachtungsgrößen darzustellen

- Beispiel: Farben-Helligkeits-Diagramm der Sterne aus der Sonnenumgebung (mit Hipparcos Satellit aufgenommen, Astrometriesatellit der ESA, 1989-1993
 => Hipparcos-Katalog mit 120k Sterne auf 0.003" vermessen
 - => Tycho-Katalog mit 1x 10⁶ Sternörter auf 0.02")
- Nächste geplante Mission:
- Gaia (Start für Ende 2011)

- Leuchtkraftklassen im HRD:
 - => jeder Stern ist

durch 3 Größen definiert:

Spektralklasse (O,B,..)

Spektral-Subklasse (0,1,..)

Leuchtkraftklasse (I,II,...)

• Beispiele:

Sonne: Hauptreihen (HR) Stern vom Typ G2V Vega: HR-Stern vom Typ A0V Arcturus: roter Riese K0III Deneb: Überriese A0Ia

Hertzsprung-Russell-Diagramm (schematisch)

M_{ν} Sterntypen Überriesen Leuchtkraftklasse I: Überriesen (la und lb) -5 Leuchtkraftklasse II: helle Riesen Leuchtkraftklasse III: Riesen Hertzsprung 0 Leuchtkraftklasse IV: Unterriesen Lücke HOUDTRING Leuchtkraftklasse V: Hauptsequenz-Sterne (Zwerge) 80%-90% aller S 5 Leuchtkraftklasse VI: Unterzwerge : Weisse Zwerge W.D. weisse Zwerge 10 15 05 B0 G0 KO M0 **A**0 **F0** Spektraltyp

Weigert, Wendker, Wisotzki

- "Physikalisches" HRD: Leuchtkraft L gegen Effektivtemperatur
- Die Leuchtkraft eines Sterns hängt mit der Effektivtemperatur über

$$\boldsymbol{L} = 4\pi \boldsymbol{R}^2 \boldsymbol{\sigma} \boldsymbol{T}_{eff}^4$$

zusammen => höhere Leuchtkraft bei gleicher Spektralklasse (also T_{eff}) bedeutet also größerer Sternradius

• Linien mit **R** = **constant** sind gegeben durch:

$$\log L = 4\log T_{eff} + A$$

• wobei:

$$\boldsymbol{A} = \log(4\pi \boldsymbol{R}^2 \boldsymbol{\sigma})$$

Beziehungen für Hauptreihensterne

- Auf der Hauptreihe ist die Masse M eng mit der Effektivtemperatur Teff und der Leuchtkraft L korreliert
- Masse-Leuchtkraft Beziehung a) $lg(L/L_{\odot})$ • für $0.5M_{\odot} \leq M \leq 10M_{\odot}$ • gilt: $\frac{L}{L_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^{3}$ $lg(M/M_{\odot})$ 0

Beziehungen für Hauptreihensterne

• Auf der Hauptreihe nimmt der Radius R nur langsam mit L zu:

Beziehungen für Hauptreihensterne

• aus
$$\frac{L}{L_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^{3.5}$$
 und $\frac{R}{R_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^{0.6}$ mit L

$$\boldsymbol{L} = 4\pi \boldsymbol{R}^2 \boldsymbol{\sigma} \boldsymbol{T}_{eff}^4$$

• folgt die Beziehung zwischen Effektivtemperatur und Masse eines Sterns:

$$T_{eff}^4 \propto M^{2.3}$$

- => die Masse M ist der primäre Parameter, der das Erscheinungsbild eines Sterns auf der Hauptreihe bestimmt
- (Masse ist schon bei der Sternentstehung festgelegt)

Charakteristischen Größen

Weigert, Wendker, Wisotzki

Charakteristische Größen von Sternen (direkte Messwerte).					
Spek-	LK-	$T_{\rm eff}$	M_V	$(B - V)_0$	$(U-B)_0$
traltyp	Klasse	[K]	[mag]	[mag]	[mag]
O5	V	42000	-5.7	-0.33	-1.19
B0		30000	-4.0	-0.30	-1.08
B5		15200	-1.2	-0.17	-0.58
A0		9790	+0.65	-0.02	-0.02
A5		8180	1.95	+0.15	+0.10
F0		7300	2.7	0.30	+0.03
F5		6650	3.5	0.44	-0.02
G0		5940	4.4	0.58	+0.06
G5		5560	5.1	0.68	0.20
K0		5150	5.9	0.81	0.45
K5		4410	7.35	1.15	1.08
M0		3840	8.8	1.40	1.22
M5		3170	12.3	1.64	1.24
L0	Braune	2000	_	_	_
Т0	Zwerge	1300	—	-	_
B0		29000	-5.1	-0.30	-1.08
A0		10100	+0.0	-0.03	-0.07
F0		7150	1.5	+0.25	+0.08
G0		5850	1.0	0.65	0.21
K0		4660	+0.7	1.00	0.84
M0		3690	-0.4	1.56	1.87
M5		3380	-0.3	1.63	1.58
O5	I	40300	-6.6	-0.30	-1.17
B5		13600	-6.2	-0.10	-0.71
A5		8610	-6.6	+0.09	-0.08
F5		6370	-6.6	0.32	+0.27
G5		4930	-6.2	1.02	0.83
K5		3990	-5.8	1.60	1.80
M5		2880	-5.6	1.80	1.60
heiße	Weiße	70000	8	-1.0	-1.5
kühle	Zwerge	4000	16	+1.0	+0.5

Charakteristische Größen von Sternen (abgeleitete Werte, in solaren Einheiten).								
-	Spek-	LK-	L	М	R	ρ	g	
	traltyp	Klasse						
-	Sonne		$3.9 \cdot 10^{26}$	$2 \cdot 10^{30}$	$6.96 \cdot 10^{8}$	$1.41 \cdot 10^{3}$	274	
	G2	V	[W]	[kg]	[m]	$[kgm^{-3}]$	$[m s^{-2}]$	
-	O5	V	800 000	60	12	0.03	0.4	
	B0		52000	17.5	7.4	0.04	0.3	
	B5		830	5.9	3.9	0.1	0.4	
	A0		54	2.9	2.4	0.2	0.5	
	A5		14	2.0	1.7	0.4	0.7	
	F0		6.5	1.6	1.5	0.5	0.8	
	F5		3.2	1.4	1.3	0.6	0.8	
	G0		1.5	1.05	1.1	0.8	0.9	
	G5		0.79	0.92	0.92	1.1	1.1	
	K0		0.42	0.79	0.85	1.3	1.1	
	K5		0.15	0.67	0.72	1.8	1.3	
	M0		0.077	0.51	0.60	2.2	1.4	
	M5		0.011	0.21	0.27	10.	3.2	
	L0	Braune	_	<0.08	-	-	-	
	Т0	Zwerge	-	-	-	-	-	
-	B0		110 000	20	15	0.006	0.08	
	A0		106	4	5	0.03	0.03	
	F0		20	_	-	_	_	
	G0		34	_	_	_	_	
	K0		60	_	-	-	-	
	M0		330	-	-	-	-	
	M5		930	_	-	-	-	
-	O5	Ι	1 100 000	70	30	0.0025	0.08	
	B5		52000	_	-	-	-	
	A5		35000	_	-	-	-	
	F5		32000	-	-	-	-	
	G5		29000	-	-	-	-	
	K5		38000	-	-	-	-	
	M5		300 000	_	-	-	_	
-	heiße	Weiße	_	_	_	_	_	
	kühle	Zwerge	-	-	-	-	-	

Sternradien

- Trigonometrische Messung: erfordert die Bestimmung des scheinbaren Winkeldurchmessers α und der Entfernung r des Sterns.
- Nur für sehr wenige Sterne messbar
- Sonne: $\alpha = 31'59''$, mit r = 1 AE => R = 6.96 x 10⁵ km
- Andere Sterne α << 1" => interferometrische Methoden (bis zu 10⁻⁴") => werden die Messung des Sonnenradius in ~ 10 pc Entfernung ermöglichen
- Bedeckungsveränderliche (Doppelsternsysteme, die sich während eines Umlaufes gegenseitig bedecken)

Bedeckungsveränderliche Sterne

- Prinzip am einfachen Fall: Stern1 mit Ø=D wird von Stern2 mit Ø=d mit Geschwindigkeit v umlaufen (Kreisbahn). Das System entfernt sich mit Radialgeschwindigkeit V von uns.
- => Stern₂ hat Radialgeschwindigkeiten zwischen V+v und V-v
- => Doppler-Linienverschiebung zwischen $\Delta \lambda_1$ und $\Delta \lambda_2$:

$$\frac{\Delta\lambda_1}{\lambda_0} = \frac{V + v}{c}, \quad \frac{\Delta\lambda_2}{\lambda_0} = \frac{V - v}{c}$$
$$\Rightarrow \frac{\Delta\lambda_1 - \Delta\lambda_2}{\lambda_0} = 2\frac{v}{c}$$

Während jedes Umlaufes -> Bedeckung von Stern 1 => Abnahme der Helligkeit (t₁, t₂, t₃, t₄ messbar)

$$D + d = v(t_4 - t_1)$$
$$D - d = v(t_3 - t_2)$$
$$\Rightarrow D, d$$

In Realität: keine Kreisbahnen, Beobachtungsrichtung liegt nicht in Bahnebene, beide Sterne bewegen sich um den gemeinsamen Schwerpunkt (v1 und v2 aus beiden Spektren), usw

Sternradien

• Indirekte Bestimmung: Teff aus Sternspektrum

$$\Rightarrow \qquad \mathbf{R} = \sqrt{\frac{L}{4\pi\sigma T_{eff}^4}}$$

Wertebereich für Sternradien:

- \bullet Neutronensterne: $R\sim 10~{\rm km}$
- Weiße Zwerge: $R \sim 0.01 \, R_{\odot}$
- Sonnenähnliche Sterne: $R \sim 0.5 \dots 10 \, R_{\odot}$
- Rote Riesen: $R \sim 20 \dots 100 R_{\odot}$
- Überriesen: $R \sim 100 \dots 1000 R_{\odot}$

Sternmassen

- Wie kann man aus der Vermessung der Bahnen von Doppelsternen deren Massen bestimmen?
- Prinzip: nach dem 3. Keplerschen Gesetz

$$\boldsymbol{P}^{2} = \frac{4\pi^{2}}{\boldsymbol{G}(\boldsymbol{m}_{1} + \boldsymbol{m}_{2})} \boldsymbol{a}^{3} \qquad \begin{array}{l} \text{a = große Halbachse} \\ \text{der Schwerpunktsbewegung} \end{array}$$

• wir schreiben um und teilen durch die Gleichung für die Erdbewegung um die Sonne:

$$m_{1} + m_{2} = \frac{4\pi^{2}}{G} \frac{a^{3}}{P^{2}}$$
$$\frac{m_{1} + m_{2}}{M_{\odot}} = \frac{(a / 1AE)^{3}}{(P / 1Jahr)^{2}}$$

• Sind die absoluten Bahnen (dh die großen Halbachsen a1 und a2) bekannt, folgt

$$\frac{a_1}{a} = \frac{m_2}{m_1 + m_2}, \qquad \frac{a_2}{a} = \frac{m_1}{m_1 + m_2}$$
$$\Rightarrow \frac{m_1}{m_2} \qquad \text{und} \qquad m_1 + m_2 \qquad \text{iA ist nich}$$
man unter

iA ist nicht die volle Infomation vorhanden man unterscheidet mehrere Spezialfälle

Doppelsterne und Sternmassen

- Visuelle Doppelsterne: man kann beide Sterne und ihre relative Bewegung direkt beobachten. Man erhält die scheinbare große Halbachse der Bahnellipse a" (in arcsec) sowie die Periode P. Ist die Entfernung bekannt => a und somit m1+m2; kann man auch a1 (a1") und a2 (a2") messen => m1/m2
- Spektroskopische Doppelsterne: die Sterne sind nicht getrennt sichtbar, sie werden durch periodische Schwankungen $\Delta\lambda$ der Spektrallinien um ein mittleres λ getrennt. Aus $\Delta\lambda/\lambda=v_r/c=>v_r$ und P. Man sieht 2 Systeme von Spektrallinien die jeweils ein um 180° phasenverschobenes v_r zeigen. Jedoch: v_r ist nur die Projektion auf die Beobachtungsrichtung $v_r = v_{Bahn}$ sin i, wobei i unbekannt ist.
- Bedeckungsveränderliche: eine Bedeckung erfolgt nur dann, wenn die Beobachtungsrichtung nahezu in die Bahnebene fällt, dh i ≈ 90°. Dann sind v_{r1} und v_{r2} ≈ die Bahngeschwindigkeiten; daraus, und aus der Periode P => a₁ und a₂ => a = a₁ + a₂.

Mittlere Sterndichte und Schwerebeschleunigung

• Aus M und R folgt die mittlere Dichte (jedoch sind M und R schwer zu messen!):

$$\overline{\rho} = \frac{M}{4\pi / 3R^3}$$

• Eine andere Methode: Pulsationsveränderliche (Sterne mit periodischen Helligkeitsschwankungen, die durch periodische Radienveränderungen hervorgerufen werden). Aus der Pulsationstheorie gilt:

$$\boldsymbol{P}\cdot\sqrt{\overline{\rho}}=\boldsymbol{const}.$$

- da P einfach zu messen ist => ρ . Die mittlere Dichte der Sonne ist: $\bar{\rho}_{\odot} = 1.41 \text{ g cm}^{-3}$
- wegen der R⁻³-Abhängigkeit variiert ρ sehr stark:

10⁻⁶ g cm⁻³ bei Überriesen

10⁶ g cm⁻³ bei Weißen Zwergen

10¹⁴ ···· 10¹⁵ g cm⁻³ bei Neutronensternen

Mittlere Sterndichte und Schwerebeschleunigung

- Beispiele:
- Sirius (hellste Stern am Himmel, m=-1.47): A1 Stern mit M = 2.3 M_{\odot} und R = 1.6 R_{\odot}
- Die mittlere Dichte ist

$$\bar{\rho} = \frac{2.3M_{\odot}}{\frac{4\pi}{3}(1.6R)^3} = 0.56\bar{\rho}_{\odot} = 0.79\text{ g cm}^{-3}$$

• Betelgeuse: roter Überriese,M2, mit M = 10 - 17 M_o und R \approx 1000 R_o

$$\overline{\rho} = \frac{10M_{\odot}}{\frac{4\pi}{3}(1000R)^3} = 10^{-8}\overline{\rho}_{\odot}$$

Mittlere Sterndichte und Schwerebeschleunigung

- Schwerebeschleunigung an der Oberfläche:
- mitbestimmend für die Struktur der äußeren Sternschichten => Sternspektren

$$\boldsymbol{g}_0 = \frac{\boldsymbol{G}\boldsymbol{M}}{\boldsymbol{R}^2}$$

• $g_0 \sim R^{-2} =>$ variiert über Faktor 10⁸ von Weißen Zwergen zu Überriesen

Sonne: $g_0 = 274 \text{ m s}^{-2}$

iA gilt für Hauptreihensterne: g $\approx 2 \; x \; 10^2 \; m \; s^{\text{-}2}$

für Riesen und Überriesen: $g \le 1 \times 10^{-2} \text{ m s}^{-2}$

```
für Weiße Zwerge: g\approx 1~x~10^6~m~s^{\text{-}2}
```